【題目】如圖,的直徑,上不同于的兩點(diǎn),,連接.過點(diǎn),垂足為,直線相交于點(diǎn)

(1)求證:的切線;

(2)當(dāng),時(shí),求的長.

【答案】1)證明見解析;(29.

【解析】

1)連接OC.先根據(jù)等邊對(duì)等角及三角形外角的性質(zhì)得出∠3=21,由已知∠4=21,得到∠4=3,則OCDB,再由CEDB,得到OCCF,根據(jù)切線的判定即可證明CF為⊙O的切線;

2)連結(jié)AD.先解RtBEF,得出BE=BFsinF=3,由OCBE,得出FBE∽△FOC,則,設(shè)⊙O的半徑為r,由此列出方程,解方程求出r的值,由AB為⊙O直徑,得出AB=15,∠ADB=90°,再根據(jù)三角形內(nèi)角和定理證明∠F=BAD,則由sinBAD=,求出BD的長.

1)證明:連接OC

OA=OC,

∴∠1=2

又∵∠3=1+2

∴∠3=21

又∵∠4=21,

∴∠4=3

OCDB

CEDB,

OCCF

又∵OC為⊙O的半徑,

CF為⊙O的切線;

2)解:連結(jié)AD

RtBEF中,∵∠BEF=90°,BF=5,

BE=BFsinF=3

OCBE,

∴△FBE∽△FOC,

設(shè)⊙O的半徑為r,

,

AB為⊙O直徑,

AB=15,∠ADB=90°,

∵∠4=EBF,

∴∠F=BAD,

,

BD=9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A4,0),點(diǎn)B0,4),CAB中點(diǎn),連接OC,將△AOC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到△AMN,記旋轉(zhuǎn)角為α,點(diǎn)OC的對(duì)應(yīng)點(diǎn)分別是M,N.連接BM,PBM中點(diǎn),連接OPPN

(Ⅰ)如圖.當(dāng)α45°時(shí),求點(diǎn)M的坐標(biāo);

(Ⅱ)如圖,當(dāng)α180°時(shí),求證:OPPNOPPN;

(Ⅲ)當(dāng)△AOC旋轉(zhuǎn)至點(diǎn)B,MN共線時(shí),求點(diǎn)M的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:平行四邊形ABCD中,EAB中點(diǎn),AFFD,連E、FACG,則AGGC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一列有理數(shù)﹣1,2,﹣3,4,﹣5,6,……,如圖所示有序排列,根據(jù)圖中的排列規(guī)律可知,1”中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,5”C的位置是有理數(shù)___,﹣2019應(yīng)排在AB、C、D、E中的___位置.其中兩個(gè)填空依次為( 。

A. 24,C B. 24.A C. 25,B D. ﹣25,E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮組成團(tuán)隊(duì)參加某科學(xué)比賽.該比賽的規(guī)則是:每輪比賽一名選手參加,若第一輪比賽得分滿60則另一名選手晉級(jí)第二輪,第二輪比賽得分最高的選手所在團(tuán)隊(duì)取得勝利.為了在比賽中取得更好的成績,兩人在賽前分別作了九次測試,如圖為二人測試成績折線統(tǒng)計(jì)圖,下列說法合理的是( 。

小亮測試成績的平均數(shù)比小明的高;小亮測試成績比小明的穩(wěn)定;小亮測試成績的中位數(shù)比小明的高;小亮參加第一輪比賽,小明參加第二輪比賽,比較合理.

A. ①③B. ①④C. ②③D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮組成團(tuán)隊(duì)參加某科學(xué)比賽.該比賽的規(guī)則是:每輪比賽一名選手參加,若第一輪比賽得分滿60則另一名選手晉級(jí)第二輪,第二輪比賽得分最高的選手所在團(tuán)隊(duì)取得勝利.為了在比賽中取得更好的成績,兩人在賽前分別作了九次測試,如圖為二人測試成績折線統(tǒng)計(jì)圖,下列說法合理的是( 。

小亮測試成績的平均數(shù)比小明的高;小亮測試成績比小明的穩(wěn)定;小亮測試成績的中位數(shù)比小明的高;小亮參加第一輪比賽,小明參加第二輪比賽,比較合理.

A. ①③B. ①④C. ②③D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),將點(diǎn)向右平移6個(gè)單位長度,得到點(diǎn)

(1)直接寫出點(diǎn)的坐標(biāo);

(2)若拋物線經(jīng)過點(diǎn),求的值;

(3)若拋物線與線段有且只有一個(gè)公共點(diǎn)時(shí),求拋物線頂點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,以為坐標(biāo)原點(diǎn),以所在的直線為軸建立平面直角坐標(biāo)系,如圖.按以下步驟作圖:①分別以點(diǎn)為圓心,以大于的長為半徑作弧,兩弧相交于點(diǎn),;②作直線于點(diǎn).則點(diǎn)的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將線段平移得到線段當(dāng)時(shí),點(diǎn)同時(shí)落在反比例函數(shù)的圖象上,則的值為_______

查看答案和解析>>

同步練習(xí)冊(cè)答案