【題目】在等邊ABC中,D是邊AC上一點(diǎn),連接BD,將BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到BAE,連接ED,若BC=8BD=6.則下列四個(gè)結(jié)論:①∠AEB=BDC;②AEBC;③△BDE是等邊三角形;④△ADE的周長是14.其中正確的結(jié)論是_____(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

【答案】①②③④

【解析】

先根據(jù)等邊三角形的性質(zhì)得BA=BC,∠ABC=C=BAC=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAE=BCD=60°,,所以∠BAE=ABC=60°,則根據(jù)平行線的判定方法即可得到AEBC;由以上判斷①②,由△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE得到BD=BE,∠DBE=60°,則可判斷△BDE是等邊三角形判斷③;根據(jù)等邊三角形的性質(zhì)得∠BDE=60°,由△BDE是等邊三角形得到DE=BD=6,再利用△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,則AE=CD,

所以的周長=AE+AD+DE=CD+AD+DE=AC+BD判斷④.

解:∵△ABC為等邊三角形, BA=BC,∠ABC=C=BAC=60°,

∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,

∴∠BAE=C=60°, ∴∠BAE=ABC,

AEBC,所以①②都正確;

∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,

,

,

所以△BDE是等邊三角形是等邊三角形,故③正確.

∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,

∵△BDE是等邊三角形, DE=BD=6 而△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE AE=CD, 為等邊三角形,BC=8,所以AC=8,

∴△AED的周長=AE+AD+DE=CD+AD+DE=AC+6=8+6=14,所以④正確.

故答案為①②③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正方形ABCD內(nèi)一點(diǎn),∠APB=135 , BP=1,AP=,求PC的值( 。

A. B. 3 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x2,且OAOC,則下列結(jié)論:abc0;②9a+3b+c0c>﹣1;關(guān)于x的方程ax2+bx+c0a0)有一個(gè)根為1;其中正確的結(jié)論個(gè)數(shù)有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形 AOBC 中,ACOB,且 OB6,AC5,OA4

1)求 B、C 兩點(diǎn)的坐標(biāo);

2)以 O、AB、C 中的三點(diǎn)為頂點(diǎn)可組成哪幾個(gè)不同的三角形?

3)是否在邊 AC BC(含端點(diǎn))上分別存在點(diǎn) M 和點(diǎn) N,使得△MON 的面積最大時(shí),它的周長還最短?若存在,說明理由,并求出這時(shí)點(diǎn) M、N 的坐標(biāo);若不存在,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,且ABmm為常數(shù)),點(diǎn)C的中點(diǎn),點(diǎn)D為圓上一動(dòng)點(diǎn),過A點(diǎn)作⊙O的切線交BD的延長線于點(diǎn)P,弦CDAB于點(diǎn)E

1)當(dāng)DCAB時(shí),則   

2)①當(dāng)點(diǎn)D上移動(dòng)時(shí),試探究線段DA,DBDC之間的數(shù)量關(guān)系;并說明理由;

②設(shè)CD長為t,求△ADB的面積St的函數(shù)關(guān)系式;

3)當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個(gè)無蓋的長方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))

(1)在圖中畫出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時(shí),裁掉的正方形邊長多大?

(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長多大時(shí),總費(fèi)用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測(cè)得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測(cè)得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知四邊形ABCD的是邊長為4的正方形,AC為對(duì)角線,將△ACD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45度,得到△AEF(其中點(diǎn)D的對(duì)應(yīng)點(diǎn)是點(diǎn)F,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)E),則線段CF的長是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖RtABC中,∠ACB90°,∠B30°,AC1,且AC在直線l上,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到①,可得到點(diǎn)P1,此時(shí)AP12;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2,此時(shí)AP22+;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3,此時(shí)AP33+;按此規(guī)律繼續(xù)旋轉(zhuǎn),直到點(diǎn)P2020為止,則AP2020等于_______

查看答案和解析>>

同步練習(xí)冊(cè)答案