【題目】在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=8,BD=6.則下列四個(gè)結(jié)論:①∠AEB=∠BDC;②AE∥BC;③△BDE是等邊三角形;④△ADE的周長是14.其中正確的結(jié)論是_____(把你認(rèn)為正確結(jié)論的序號(hào)都填上).
【答案】①②③④
【解析】
先根據(jù)等邊三角形的性質(zhì)得BA=BC,∠ABC=∠C=∠BAC=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAE=∠BCD=60°,,所以∠BAE=∠ABC=60°,則根據(jù)平行線的判定方法即可得到AE∥BC;由以上判斷①②,由△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE得到BD=BE,∠DBE=60°,則可判斷△BDE是等邊三角形判斷③;根據(jù)等邊三角形的性質(zhì)得∠BDE=60°,由△BDE是等邊三角形得到DE=BD=6,再利用△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,則AE=CD,
所以的周長=AE+AD+DE=CD+AD+DE=AC+BD判斷④.
解:∵△ABC為等邊三角形, ∴BA=BC,∠ABC=∠C=∠BAC=60°,
∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,,
∴∠BAE=∠C=60°, ∴∠BAE=∠ABC,
∴AE∥BC,所以①②都正確;
∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,
,
,
所以△BDE是等邊三角形是等邊三角形,故③正確.
∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,
∵△BDE是等邊三角形, ∴DE=BD=6, 而△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE, ∴AE=CD, 又為等邊三角形,BC=8,所以AC=8,
∴△AED的周長=AE+AD+DE=CD+AD+DE=AC+6=8+6=14,所以④正確.
故答案為①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正方形ABCD內(nèi)一點(diǎn),∠APB=135 , BP=1,AP=,求PC的值( 。
A. B. 3 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x=2,且OA=OC,則下列結(jié)論:①abc>0;②9a+3b+c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個(gè)根為1;其中正確的結(jié)論個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形 AOBC 中,AC∥OB,且 OB=6,AC=5,OA=4.
(1)求 B、C 兩點(diǎn)的坐標(biāo);
(2)以 O、A、B、C 中的三點(diǎn)為頂點(diǎn)可組成哪幾個(gè)不同的三角形?
(3)是否在邊 AC 和 BC(含端點(diǎn))上分別存在點(diǎn) M 和點(diǎn) N,使得△MON 的面積最大時(shí),它的周長還最短?若存在,說明理由,并求出這時(shí)點(diǎn) M、N 的坐標(biāo);若不存在,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,且AB=m(m為常數(shù)),點(diǎn)C為的中點(diǎn),點(diǎn)D為圓上一動(dòng)點(diǎn),過A點(diǎn)作⊙O的切線交BD的延長線于點(diǎn)P,弦CD交AB于點(diǎn)E.
(1)當(dāng)DC⊥AB時(shí),則= ;
(2)①當(dāng)點(diǎn)D在上移動(dòng)時(shí),試探究線段DA,DB,DC之間的數(shù)量關(guān)系;并說明理由;
②設(shè)CD長為t,求△ADB的面積S與t的函數(shù)關(guān)系式;
(3)當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個(gè)無蓋的長方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))
(1)在圖中畫出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時(shí),裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長多大時(shí),總費(fèi)用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測(cè)得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測(cè)得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知四邊形ABCD的是邊長為4的正方形,AC為對(duì)角線,將△ACD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45度,得到△AEF(其中點(diǎn)D的對(duì)應(yīng)點(diǎn)是點(diǎn)F,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)E),則線段CF的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直線l上,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到①,可得到點(diǎn)P1,此時(shí)AP1=2;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2,此時(shí)AP2=2+;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3,此時(shí)AP3=3+;…按此規(guī)律繼續(xù)旋轉(zhuǎn),直到點(diǎn)P2020為止,則AP2020等于_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com