AB為半圓O的直徑,其弦AF、BE相交于Q,過(guò)E、F分別作半圓的切線得交點(diǎn)P,求證:PQ⊥AB.
分析:利用已知條件連接出輔助線,首先證明E,Q,F(xiàn),K四點(diǎn)共圓,利用對(duì)應(yīng)半徑相等得出對(duì)應(yīng)角相等,進(jìn)而證明結(jié)論.
解答:證明:延長(zhǎng)EP到K,使PK=PE,連KF、AE、EF、BF,直線PQ交AB于H.
因∠EQF=∠AQB=(90°-∠1)+(90°+∠2)=∠ABF+∠BAE=∠QFP+∠QEP,又由PK=PE=PF知∠K=∠PFK,
故∠EQF+∠K=∠QFK+∠QEK=180°,
從而E、Q、F、K四點(diǎn)共圓.
由PK=PF=PE知,P為△EFK的外心,
顯然PQ=PE=PF.
于是∠1+∠AQH=∠1+∠PQF=∠1+∠PFQ=∠1+∠AFP=∠1+∠ABF=90°.
由此知QH⊥AH,
即PQ⊥AB.
點(diǎn)評(píng):此題主要考查了切線長(zhǎng)定理,圓周角定理的推論四點(diǎn)共圓等有關(guān)知識(shí),題目綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,AB為半圓O的直徑,C、D、E、F是
AB
上的五等分點(diǎn),P為直徑AB上的任意一點(diǎn),若AB=4,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB為半圓O的直徑,OC⊥AB,OD平分∠BOC,交半圓于點(diǎn)D,AD交OC于點(diǎn)E,則∠AEO的度數(shù)是
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB為半圓O的直徑,C是半圓上一點(diǎn),且∠COA=60°,設(shè)扇形AOC、△COB、弓形BmC的面積為S1、S2、S3,則它們之間的關(guān)系是( 。
A、S1<S2<S3B、S2<S1<S3C、S1<S3<S2D、S3<S2<S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為半圓O的直徑,OC⊥AB,OD平分∠BOC,交半圓于點(diǎn)D,AD交OE于點(diǎn)E,則∠AEO的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB為半圓O的直徑,B1,B2,…,Bk是半圓上的k個(gè)點(diǎn),滿足BB1=B1B2=…Bk-1Bk,對(duì)于線段OB1,OB2,…,OBk,AB1,AB2,…,ABk,當(dāng)k=4時(shí),有
 
對(duì)互相平行的線段;當(dāng)k取任意大于1的整數(shù)時(shí),試探索這2k條線段中有多少對(duì)互相平行的線段,寫(xiě)出你的結(jié)論:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案