【題目】如圖,已知,,,.是射線上的動(dòng)點(diǎn)(點(diǎn)與點(diǎn)不重合),是線段的中點(diǎn),連結(jié),交線段于點(diǎn),如果以,,為頂點(diǎn)的三角形與相似,則線段的長為________.
【答案】或
【解析】
如果△ADN和△BME相似,一定不相等的角是∠ADN和∠MBE,因?yàn)?/span>AD∥BC,如果兩角相等,那么M與D重合,顯然不合題意.因此本題分①當(dāng)∠ADN=∠BME時(shí)和②當(dāng)∠AND=∠BEM時(shí),兩種情況解答即可.
因?yàn)槿绻?/span>ADN和△BME相似,一定不相等的角是∠ADN和∠MBE,因?yàn)?/span>AD∥BC,如果兩角相等,那么M與D重合,顯然不合題意,故應(yīng)分兩種情況進(jìn)行討論.
圖1,當(dāng)∠ADN=∠BEM時(shí),那么∠ADB=∠BEM,∴tan∠ADB=tan∠BEM.
作DF⊥BE,垂足為F,可得四邊形ABFD為矩形,則AB=DF,設(shè)BE=x,
∵tan∠ADB= AB:AD,tan∠BEM =DF:FE,
∴AB:AD=DF:FE=AB:(BE-AD).
即2:4=2:(x-4).
解得x=8.
即BE=8.
②如圖2,當(dāng)∠ADB=∠BME,
而∠ADB=∠DBE,
∴∠DBE=∠BME,
∵∠E是公共角,
∴△BED∽△MEB,
∴,即BE2=DEEM,
∵M(jìn)是線段DE的中點(diǎn),
∴EM=DE,
設(shè)BE=x,結(jié)合圖1,根據(jù)勾股定理可得:
∴= [22+(x-4)2],
∴x1=2,x2=-10(舍去),
∴BE=2.
綜上,線段BE的長為8或2,
故答案為8或2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機(jī)從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
黑棋數(shù) | 1 | 3 | 0 | 2 | 3 | 4 | 2 | 1 | 1 | 3 |
根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( )
A. 60枚 B. 50枚 C. 40枚 D. 30枚
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列材料,然后回答問題:
在關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)中,若各項(xiàng)的系數(shù)之和為零,即a+b+c=0,則有一根為1,另一根為.
證明:設(shè)方程的兩根為x1,x2,由a+b+c=0,知b=-(a+c),
∵x==,
∴x1=1,x2=.
(1)若一元二次方程ax2+bx+c=0(a≠0)的各項(xiàng)系數(shù)滿足a-b+c=0,請直接寫出此方程的兩根;
(2)已知方程(ac-bc)x2+(bc-ab)x+(ab-ac)=0有兩個(gè)相等的實(shí)數(shù)根,運(yùn)用上述結(jié)論證明:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,則下列結(jié)論:①.AD平分∠BAC;②.△BED≌△FPD;③.DP∥AB;④.DF是PC的垂直平分線.其中正確的是= _________ .(寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的邊上異于、一點(diǎn),過點(diǎn)作直線截得的三角形與相似,那么這樣的直線可以作的條數(shù)是( )
A. 1條 B. 2條 C. 3條 D. 4條
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,先描出點(diǎn),點(diǎn).
(1)描出點(diǎn)關(guān)于軸的對稱點(diǎn)的位置,寫出的坐標(biāo) ;
(2)用尺規(guī)在軸上找一點(diǎn),使的值最。ūA糇鲌D痕跡);
(3)用尺規(guī)在軸上找一點(diǎn),使(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課題學(xué)習(xí):設(shè)計(jì)概率模擬實(shí)驗(yàn).
在學(xué)習(xí)概率時(shí),老師說:“擲一枚質(zhì)地均勻的硬幣,大量重復(fù)實(shí)驗(yàn)后,正面朝上的概率約是.”小海、小東、小英分別設(shè)計(jì)了下列三個(gè)模擬實(shí)驗(yàn):
小海找來一個(gè)啤酒瓶蓋(如圖1)進(jìn)行大量重復(fù)拋擲,然后計(jì)算瓶蓋口朝上的次數(shù)與總次數(shù)的比值;
小東用硬紙片做了一個(gè)圓形轉(zhuǎn)盤,轉(zhuǎn)盤上分成8個(gè)大小一樣的扇形區(qū)域,并依次標(biāo)上1至8個(gè)數(shù)字(如圖2),轉(zhuǎn)動(dòng)轉(zhuǎn)盤10次,然后計(jì)算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;
小英在一個(gè)不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機(jī)同時(shí)摸出兩枚棋子,并大量重復(fù)上述實(shí)驗(yàn),然后計(jì)算摸出的兩枚棋子顏色不同的次數(shù)與總次數(shù)的比值.
根據(jù)以上材料回答問題:
小海、小東、小英三人中,哪一位同學(xué)的實(shí)驗(yàn)設(shè)計(jì)比較合理,并簡要說出其他兩位同學(xué)實(shí)驗(yàn)的不足之處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某消防隊(duì)在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點(diǎn)B處的求救者后,又發(fā)現(xiàn)點(diǎn)B正上方點(diǎn)C處還有一名求救者.在消防車上點(diǎn)A處測得點(diǎn)B和點(diǎn)C的仰角分別是45°和65°,點(diǎn)A距地面2.5米,點(diǎn)B距地面10.5米.為救出點(diǎn)C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com