【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長AE交BC的延長線于點(diǎn)F. 已知AD=2cm,BC=5cm.
(1)求證:FC=AD;
(2)求AB的長.
【答案】(1)證明見解析 ;(2)AB=7cm.
【解析】試題分析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點(diǎn)可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答.
(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可.
試題解析:(1)∵AD∥BC
∴∠ADC=∠ECF ,
∵E是CD的中點(diǎn),
∴DE=EC ,
∵在△ADE與△FCE中, ,
∴△ADE≌△FCE(ASA) ,
∴FC=AD ;
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF ,
∵BE⊥AE ,
∴BE是線段AF的垂直平分線,
∴AB=BF=BC+CF,
∵AD=CF ,
∴AB=BC+AD=5+2=7(cm).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了估計(jì)一個(gè)魚塘里魚的數(shù)量,第一次打撈上來20條,做上記號放入水中,第二次打撈上來25條,其中4條有記號,魚塘大約有魚__________條.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下:甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F,連接EF,則四邊形ABEF是菱形.根據(jù)兩人的作法可判斷( )
A. 甲正確,乙錯(cuò)誤 B. 乙正確,甲錯(cuò)誤
C. 甲、乙均正確 D. 甲、乙均錯(cuò)誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(﹣3,﹣2)、B(﹣1,﹣4)
(1)直接寫出:S△OAB= ;
(2)延長AB交y軸于P點(diǎn),求P點(diǎn)坐標(biāo);
(3)Q點(diǎn)在y軸上,以A、B、O、Q為頂點(diǎn)的四邊形面積為6,求Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( )
A.同位角相等
B.平行于同一直線的兩條直線互相平行
C.兩個(gè)銳角的和是銳角
D.和為180°的兩個(gè)角互為鄰補(bǔ)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=3x2﹣6x+k(k為常數(shù))的圖像經(jīng)過點(diǎn)A(0.8,y1),B(1.1,y2),C( ,y3),則有( )
A.y1<y2<y3
B.y1>y2>y3
C.y3>y1>y2
D.y1>y3>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),AC是對角線,過點(diǎn)B作BG∥AC交DA的延長線于點(diǎn)G.
(1)求證:CE∥AF;
(2)若∠G=90°,求證:四邊形CEAF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某籃球運(yùn)動員帶了2件上衣和3條短褲(上衣和短褲分別裝在兩個(gè)包里),上衣的顏色是紅色和白色,短褲的顏色是紅色、白色、黃色.
(1)他隨意拿出一件上衣和一條短褲配成一套,用畫樹狀圖或列表的方法列出所有可能出現(xiàn)的結(jié)果.
(2)他隨意拿出一件上衣和一條短褲,顏色正好相同的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中, .邊的垂直平分線交邊于點(diǎn),邊的垂線交邊于點(diǎn),連接, ,則的度數(shù)為__________.(用含的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com