【題目】為了了解高峰時段37路公交車從總站乘該路車出行的人數(shù),隨機抽查了10個班次乘該路車人數(shù),結(jié)果如下:16,25,18,27,25,30,282925,27

(1)請求出這10個班次乘該路車人數(shù)的平均數(shù)、眾數(shù)與中位數(shù);

(2)如果37路公交車在高峰時段從總站共發(fā)出50個班次,根據(jù)上面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少人?

【答案】解:(1)平均數(shù)是25人,眾數(shù)是25人,中位數(shù)是26人;(2)1250 人.

【解析】

1)根據(jù)平均、眾數(shù)和中位數(shù)的概念分別求解即可;

2)用平均數(shù)乘以發(fā)車班次就是乘客的總?cè)藬?shù).

解:(1)平均數(shù)=16+25+18+27+25+30+28+29+25+27=25(人),

這組數(shù)據(jù)按從小到大的順序排列為:16,1825,25,2527,27,28,2930,

中位數(shù)為:;

眾數(shù)為:25;

250×25=1250(人);

答:在高峰時段從總站乘該路車出行的乘客共有1250人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=ax+223y2=x32+1交于點A1,3),過點Ax軸的平行線,分別交兩條拋物線于點BC.則以下結(jié)論:

①無論x取何值,y2的值總是正數(shù);

a=1

③當(dāng)x=0時,y2﹣y1=4

2AB=3AC

其中正確結(jié)論是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=6cm, AC=12cm,動點M從點A出發(fā),以1cm∕秒的速度向點B運動,動點N從點C出發(fā),以2cm∕秒的速度向點A運動,若兩點同時運動,是否存在某一時刻t,使得以點A、M、N為頂點的三角形與△ABC相似,若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OBCD中的三個頂點在⊙O上,點A是⊙O上的一個動點(不與點B、C、D重合).

(1)若點A在優(yōu)弧上,且圓心O在∠BAD的內(nèi)部,已知∠BOD=120°,則∠OBA+ODA= °.

(2)若四邊形OBCD為平行四邊形.

①當(dāng)圓心O在∠BAD的內(nèi)部時,求∠OBA+ODA的度數(shù);

②當(dāng)圓心O在∠BAD的外部時,請畫出圖形并直接寫出∠OBA與∠ODA的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,將正方形ABCD沿AF折疊,使點B落在點E處.已知AB=4cm,BF=1cm,則點E到CD的距離為________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓 O 中有折線 ABCO,BC=6,CO=4,∠B=∠C=60°,則弦 AB 的長為__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結(jié)論:2a+b<0;abc>0;4a2b+c>0;a+c>0,其中正確結(jié)論的個數(shù)為( ).

A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙ORtABC的斜邊AB相切于點D,與直角邊AC相交于E、F兩點,連結(jié)DE,已知∠B=30°,O的半徑為12,弧DE的長度為

1)求證:DEBC;

2)若AF=CE,求線段BC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD內(nèi)兩點M、N,滿足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四邊形BMDN的面積是菱形ABCD面積的,則cosA= ______

查看答案和解析>>

同步練習(xí)冊答案