如圖:在以點O為坐標原點的平面直角坐標系中,已知B(0,4),A(3,0),且DB=12,DA=13
(1)求四邊形BOAD的面積;
(2)求點D的坐標.

解:(1)連接AB,則AB2=OA2+OB2=25,

又∵DB=12,DA=13,
∴DA2=DB2+AB2,
∴△ABD是直角三角形,
故S四邊形BOAD=S△AOB+S△ABD=×3×4+×5×12=36;
(2)過點D作DE⊥OA,過點B作BF⊥DE,

設點D坐標為(x,y),則由圖形得:AE2+DE2=AD2,DF2+BF2=BD2
,
解得:
即點D的坐標為(,).
分析:(1)連接AB,則在RT△OAB中,利用勾股定理可求出AB,繼而利用勾股定理的逆定理可判斷出△ABD也是直角三角形,根據(jù)S四邊形BOAD=S△AOB+S△ABD即可得出答案.
(2)設則根據(jù)DA及DB的長度可得出x、y的值,繼而得出點B坐標.
點評:此題考查了勾股定理及勾股定理的逆定理,第一問的關鍵是判斷出△ABD是直角三角形,第二問難度較大,注意解方程時要細心.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,已知四邊形ABCD,點P為平面內(nèi)一動點.如果∠PAD=∠PBC,那么我們稱點P為四邊形ABCD關于A、B的等角點.如圖2,以點B為坐標原點,BC所在直線為x軸建立平面直角坐標系,點C的橫坐標為6.
(1)若A、D兩點的坐標分別為A(0,4)、D(6,4),當四邊形ABCD關于A、B的等角點P在DC邊上時,則點P的坐標為
 

(2)若A、D兩點的坐標分別為A(2,4)、D(6,4),當四邊形ABCD關于A、B的等角點P在DC邊上時,求點P的坐標;
(3)若A、D兩點的坐標分別為A(2,4)、D(10,4),點P(x,y)為四邊形ABCD關于A、B的等角點,其中x>2,y>0,求y與x之間的關系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:在以點O為坐標原點的平面直角坐標系中,已知B(0,4),A(3,0),且DB=12,DA=13
(1)求四邊形BOAD的面積;
(2)求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年云南省九年級10月綜合練習數(shù)學試卷(解析版) 題型:解答題

如圖1,已知四邊形ABCD,點P為平面內(nèi)一動點.如果∠PAD=∠PBC,那么我們稱點P為四邊形ABCD關于A、B的等角點. 如圖2,以點B為坐標原點,BC所在直線為x軸建立平面直角坐標系,點C的橫坐標為6.

(1)若A、D兩點的坐標分別為A(0,4)、D(6,4),當四邊形ABCD關于A、B的等角點P在DC邊上時,則點P的坐標為                  ;

(2)若A、D兩點的坐標分別為A(2,4)、D(6,4),當四邊形ABCD關于A、B的角點P在DC邊上時,求點P的坐標;

(3)若A、D兩點的坐標分別為A(2,4)、D(10,4),點P(x,y)為四邊形ABCD關于A、B的等角點,其中x>2,y>0,求y與x之間的關系式.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2009年內(nèi)蒙古烏海市中考數(shù)學模擬試卷(解析版) 題型:解答題

如圖:在以點O為坐標原點的平面直角坐標系中,已知B(0,4),A(3,0),且DB=12,DA=13
(1)求四邊形BOAD的面積;
(2)求點D的坐標.

查看答案和解析>>

同步練習冊答案