【題目】某林業(yè)部門統(tǒng)計(jì)某種樹苗在本地區(qū)一定條件下的移植成活率,結(jié)果如表:

移植的棵數(shù)

300

700

1000

5000

15000

成活的棵數(shù)

280

622

912

4475

13545

成活的頻率

0.933

0.889

0.912

0.895

0.903

根據(jù)表中的數(shù)據(jù),估計(jì)這種樹苗移植成活的概率為_____(精確到0.1);如果該地區(qū)計(jì)劃成活4.5萬棵幼樹,那么需要移植這種幼樹大約_____萬棵.

【答案】0.9; 5

【解析】

觀察表格內(nèi)的數(shù)據(jù)可知,隨著樣本數(shù)量不等增加,這種幼樹移植成活率穩(wěn)定的0.9左右;再利用成活率=,即0.9=,即可解決問題.

由表格數(shù)據(jù)可得,隨著樣本數(shù)量不等增加,這種幼樹移植成活率穩(wěn)定的0.9左右,

故這種幼樹移植成活率的概率約為0.9

∵該地區(qū)計(jì)劃成活4.5萬棵幼樹,

∴那么需要移植這種幼樹大約4.5÷0.95萬棵

故本題答案為:0.95

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李在景區(qū)銷售一種旅游紀(jì)念品,已知每件進(jìn)價為6元,當(dāng)銷售單價定為8元時,每天可以銷售200件.市場調(diào)查反映:銷售單價每提高1元,日銷量將會減少10件,物價部門規(guī)定:銷售單價不能超過12元,設(shè)該紀(jì)念品的銷售單價為x(元),日銷量為y(件),日銷售利潤為w(元).

1)求yx的函數(shù)關(guān)系式.

2)要使日銷售利潤為720元,銷售單價應(yīng)定為多少元?

3)求日銷售利潤w(元)與銷售單價x(元)的函數(shù)關(guān)系式,當(dāng)x為何值時,日銷售利潤最大,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在小明的一次投籃中,球出手時離地面高2米,與籃圈中心的水平距離為7米,當(dāng)球出手后水平距離為4米時到達(dá)最大高度4米.籃球運(yùn)行的軌跡為拋物線,籃球中心距離地面3米,通過計(jì)算說明此球能否投中.

探究一:若出手的角度、力度和高度都不變的情況下,求小明朝著籃球架再向前平移多少米后跳起投籃也能將籃球投入籃筐中?

探究二:若出手的角度、力度和高度都發(fā)生改變的情況下,但是拋物線的頂點(diǎn)等其他條件不變,求小明出手的高度需要增加多少米才能將籃球投入籃筐中?

探究三:若出手的角度、力度都改變,出手高度不變,籃筐的坐標(biāo)為(63.44),球場上方有一組高6米的電線,要想在籃球不觸碰電線的情況下,將籃球投入籃筐中,直接寫出二次函數(shù)解析式中a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是銳角的外接圓,的切線,切點(diǎn)為,,連結(jié),的平分線,連結(jié).下列結(jié)論:①平分;②連接,點(diǎn)的外心;③;④若點(diǎn),分別是上的動點(diǎn),則的最小值是.其中一定正確的是__________(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的弦,過點(diǎn)的切線延長線于點(diǎn)

(Ⅰ)若,求的度數(shù);

(Ⅱ)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的函數(shù),如表是的幾組對應(yīng)值.

5

4

3

2

0

1

2

3

4

5

1.969

1.938

1.875

1.75

1

0

2

1.5

0

2.5

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

下面是小明的探究過程,請補(bǔ)充完整:

1)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

2)根據(jù)畫出的函數(shù)圖象,寫出:

對應(yīng)的函數(shù)值約為   ;

該函數(shù)的一條性質(zhì):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D、E分別在邊ABAC上,AE2ADAB,∠ABE=∠ACB

1)求證:DEBC;

2)如果SADES四邊形DBCE18,求SADESBDE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)的圖象經(jīng)過點(diǎn)A、P,點(diǎn)A6,),點(diǎn)P的橫坐標(biāo)是2.拋物線yax2+bx+ca≠0)經(jīng)過坐標(biāo)原點(diǎn),且與x軸交于點(diǎn)B,頂點(diǎn)為P

求:(1)反比例函數(shù)的解析式;

2)拋物線的表達(dá)式及B點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】清代《修武縣志》有勝果寺的記載,“康熙五十二年三月十七日,塔頂現(xiàn)青白二氣如云,越二日乃止”,此文中的塔即為“勝果寺塔”,是修武作為“千年古縣”的標(biāo)志性古建筑.為了測量塔的高度,某校數(shù)學(xué)興趣小組的兩名同學(xué)采用了如下方式進(jìn)行測量.如圖,小明站在處,眼睛距離地面的高度為,測得塔頂的仰角為,小紅站在距離小明處,眼睛距離地面的高度為,測得塔頂的仰角為,已知,塔底在同一水平面上,由此即可求出塔高.你知道是怎么求的嗎?請寫出解題過程.(結(jié)果精確到.參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案