【題目】如圖,直線y=﹣x+4x軸,y軸分別交于點(diǎn)BC,點(diǎn)Ax軸負(fù)半軸上,且OAOB,拋物線yax2+bx+4經(jīng)過A,BC三點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)P是第一象限內(nèi)拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m,過點(diǎn)PPDBC,垂足為D,用含m的代數(shù)式表示線段PD的長,并求出線段PD的最大值.

【答案】1y=﹣x2+x+4;(2PD=m22+,,PD有最大值,最大值為

【解析】

1)先求出點(diǎn)AB的坐標(biāo),再利用待定系數(shù)法求解即可;

2)先求出CP的坐標(biāo),由此得到線段CP的長度,根據(jù)平行線的性質(zhì)得,解直角三角形即可求出PD的表達(dá)式,利用二次函數(shù)的性質(zhì)求出PD的最大值即可.

1)在y=﹣x+4中,當(dāng)x0時(shí),y4;當(dāng)y0時(shí),x4,

B4,0),C0,4),

OBOC=4

OAOB2,

A(﹣20),

A(﹣2,0),B4,0)代入yax2+bx+4中,得

,解得,

拋物線的解析式為:y=﹣x2+x+4

2)過PPFy軸,交BCF

RtOBC中,∵OBOC4,∴∠OCB45°,

∴∠PFD=45°,

PD=PF

P(m,﹣m2+m+4),F(m,-m+4),得:PF=m2+2m

PD=(﹣m2+2m

=m22+,其中,0m4,

∵﹣0,

∴當(dāng)m2時(shí),PD有最大值,最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABCDEC重合放置,其中∠C=90°.若固定△ABC,將△DEC繞點(diǎn)C旋轉(zhuǎn).

1)當(dāng)△DEC統(tǒng)點(diǎn)C旋轉(zhuǎn)到點(diǎn)D恰好落在AB邊上時(shí),如圖2

當(dāng)∠B=E=30°時(shí),此時(shí)旋轉(zhuǎn)角的大小為 ;

當(dāng)∠B=E時(shí),此時(shí)旋轉(zhuǎn)角的大小為 (用含a的式子表示)

2)當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到如圖3所示的位置時(shí),小楊同學(xué)猜想:△BDC的面積與△AEC的面積相等,試判斷小楊同學(xué)的猜想是否正確,若正確,請你證明小楊同學(xué)的猜想.若不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的頂點(diǎn)A,C分別在y軸和x軸上,邊BC的中點(diǎn)Fy軸上,若反比例函數(shù)y的圖象恰好經(jīng)過CD的中點(diǎn)E,則OA的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進(jìn)價(jià)每個(gè)為10元,當(dāng)售價(jià)每個(gè)為12元時(shí),銷售量為180個(gè),若售價(jià)每提高1元,銷售量就會(huì)減少10個(gè),請回答以下問題:

(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷售量y(個(gè))與售價(jià)x(元)之間的函數(shù)關(guān)系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時(shí)獲得840元利潤,售價(jià)應(yīng)定為多少?

(3)當(dāng)售價(jià)定為多少時(shí),王大伯獲得利潤W最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 y=﹣x2+bx+c x 軸交于 A、B 兩點(diǎn),與 y 軸交于點(diǎn) C ,點(diǎn) A 的坐標(biāo)為(-1,0),點(diǎn) C 的坐標(biāo)為(0,3),點(diǎn)D和點(diǎn) C 關(guān)于拋物線的對稱軸對稱,直線 AD y 軸交于點(diǎn) E

1)求拋物線的解析式;

2)如圖,直線 AD 上方的拋物線上有一點(diǎn) F,過點(diǎn) F FGAD 于點(diǎn) G,作 FH 平行于 x 軸交直線 AD 于點(diǎn) H,求FGH 周長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+ca≠0)與x軸交于點(diǎn)A(-2,0),B(40),與直線交于點(diǎn)C(0,-3),直線x軸交于點(diǎn)D

1)求該拋物線的解析式.

2)點(diǎn)P是拋物線上第四象限上的一個(gè)動(dòng)點(diǎn),連接PCPD,當(dāng)PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反例關(guān)系,且在溫度達(dá)到30℃時(shí),電阻下降到最小值;隨后電阻承溫度升高而增加,溫度每上升1℃,電阻增加kΩ.

(1)求Rt之間的關(guān)系式;

(2)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過4kΩ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市為了銷售一種新型“吸水拖把”,對銷售情況作了調(diào)查,結(jié)果發(fā)現(xiàn)每月銷售量y(只)與銷售單價(jià)x(元)滿足一次函數(shù)關(guān)系,所調(diào)查的部分?jǐn)?shù)據(jù)如表:(已知每只進(jìn)價(jià)為10元,銷售單價(jià)為整數(shù),每只利潤=銷售單價(jià)﹣進(jìn)價(jià))

銷售單價(jià)x(元)

20

22

25

月銷售額y(只)

300

280

250

1)求出yx之間的函數(shù)表達(dá)式

2)該新型“吸水拖把”每月的總利潤為w(元),求w關(guān)于x的函數(shù)表達(dá)式,并指出銷售單價(jià)為多少元時(shí)利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點(diǎn),DEAC,EFAB,

FDBC,則DEF的面積與ABC的面積之比等于( )

A13 B23 C2 D3

查看答案和解析>>

同步練習(xí)冊答案