【題目】如圖,在等邊三角形ABC中,AB=6,點P是AB邊上的任意一點(點P不與點A、點B重合),過點P作PD⊥AB,交直線BC于點D,作PE⊥AC,垂足為點F.
(1)求∠APE的度數(shù);
(2)連接DE,當△PDE為等邊三角形時,求BP的長.
【答案】
(1)解:∵△ABC為等邊三角形,
∴∠A=∠B=∠C=60°,
∵PE⊥AC,
∴∠AEP=90°,
∴∠APE=180°﹣∠A﹣∠AEP=180°﹣60°﹣90°=30°
(2)解:設(shè)BP=x,則AP=6﹣x,
在Rt△BPD中,PD=BPtan60°= x,在Rt△APE中,PE=APsin60°= ,
∵△PDE為等邊三角形,
∴PD=PE,
即 = (6﹣x),
解得:x=2,
∴當△PDE為等邊三角形時,BP的長為2
【解析】(1)利用等邊三角形的性質(zhì)可得∠A=∠B=∠C=60°,在利用垂直的定義和三角形內(nèi)角和定理可得結(jié)果;(2)設(shè)BP=x,根據(jù)等邊三角形的性質(zhì),利用三角函數(shù),易得PD= x,在Rt△APE中,PE=APsin60°= ,利用等邊三角形的性質(zhì)可得PE=PD,建立等量關(guān)系,解得x.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠CAB=∠CBA=50°,O為△ABC內(nèi)一點,∠OAB=10°,∠OBC=20°,則∠OCA的度數(shù)為( )
A.55°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,A(0,4),B(﹣3,0),C(2,0),D為B點關(guān)于AC的對稱點,反比例函數(shù)y= 的圖象經(jīng)過D點.
(1)證明四邊形ABCD為菱形;
(2)求此反比例函數(shù)的解析式;
(3)已知在y=的圖象(x>0)上一點N,y軸正半軸上一點M,且四邊形ABMN是平行四邊形,求M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一食堂需要購買盒子存放食物,盒子有A、B兩種型號,單個盒子的容量和價格如表格所示.現(xiàn)有15升食物需要存放且要求每個盒子都要裝滿,由于A型號盒子正做促銷活動:購買三個及三個以上可一次性每個返還現(xiàn)金1.5元,則該食堂購買盒子所需最少費用是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解一元二次方程x2-8x+3=0,此方程可化為( )
A. (x-4)2=13 B. (x+4)2=13 C. (x-4)2=19 D. (x+4)2=19
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、C的坐標分別為(﹣1,0)、(0,﹣ ),點B在x軸上.已知某二次函數(shù)的圖象經(jīng)過A、B、C三點,且它的對稱軸為直線x=1,點P為直線BC下方的二次函數(shù)圖象上的一個動點(點P與B、C不重合),過點P作y軸的平行線交BC于點F.
(1)求該二次函數(shù)的解析式;
(2)若設(shè)點P的橫坐標為m,用含m的代數(shù)式表示線段PF的長;
(3)求△PBC面積的最大值,并求此時點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com