如圖,△ABC的內(nèi)切圓分別切、于D、E、F三點(diǎn),其中P、Q兩點(diǎn)分別在、上.若∠A=30°,∠B=80°,∠C=70°,則弧長(zhǎng)與弧長(zhǎng)的比值為( )

A.
B.
C.
D.
【答案】分析:設(shè)△ABC的內(nèi)切圓的圓心為O,連接OD、OE、OF,所以∠ADO=∠AFO=∠BDO=∠BEO=90°;再根據(jù)四邊開的內(nèi)角和定理,∠A+∠DOF=180°,則∠ADO=150°,同理∠EOD=180°-80°=100°;最后由弧的比等于弧所對(duì)的圓心角的比,可得出弧長(zhǎng)與弧長(zhǎng)的比值2:3.
解答:解:設(shè)△ABC的內(nèi)切圓的圓心為O,連接OD、OE、OF,
∵∠ADO=∠AFO=∠BDO=∠BEO=90°,
∴∠A+∠DOF=180°,
∴∠DOF=150°,
同理∠EOD=180°-80°=100°,
∴弧長(zhǎng)與弧長(zhǎng)的比值2:3.
故選A.
點(diǎn)評(píng):本題主要考查了內(nèi)切圓的性質(zhì)及弧長(zhǎng)的比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知:如圖,△ABC內(nèi)接于⊙O,AE切⊙O于點(diǎn)A,BD∥AE交AC的延長(zhǎng)線于點(diǎn)D,求證:AB2=AC•AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC內(nèi)接于⊙O1,以AC為直徑的⊙O2交BC于點(diǎn)D,AE切⊙O1于點(diǎn)A,交⊙O2精英家教網(wǎng)點(diǎn)E,連接AD、CE,若AC=7,AD=3
5
,tanB=
5
2

求:(1)BC的長(zhǎng);
(2)CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖,△ABC內(nèi)切⊙O于D、E、F三點(diǎn),內(nèi)切圓⊙O的半徑為1,∠C=60°,AB=5,則△ABC的周長(zhǎng)為(  )
A、12
B、14
C、10+2
3
D、10+
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:解題升級(jí)  解題快速反應(yīng)一典通  九年級(jí)級(jí)數(shù)學(xué) 題型:044

己知:如圖,⊙O與內(nèi)切于點(diǎn)B,BC是⊙O的直徑,BC=6,BF為的直徑,BF=4,⊙O的弦BA交于點(diǎn)D,連接DF、AC、CD.(1)求證:DF∥AC;(2)當(dāng)∠ABC等于多少度時(shí),CD與相切?并證明你的結(jié)論.(3)在(2)的前提下,連接FA交CD于點(diǎn)E,求AF、EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:解答題

已知如圖,⊙O的內(nèi)接△ABC,AE切⊙O于A點(diǎn),過C作AE的平行線交AB于D點(diǎn).   
(1)求證:AC2=AB·AD.  
(2)若∠B=60°,⊙O的直徑為6,求S

查看答案和解析>>

同步練習(xí)冊(cè)答案