【題目】如圖,正方形ABCD的邊與正方形CGFE的邊CE重合,O是EG的中點(diǎn),的平分線GH過點(diǎn)D,交BE于點(diǎn)H,連接OH、FH,EG與FH交于點(diǎn)M,對(duì)于下面四個(gè)結(jié)論:①;②//且=;③;④∽,其中正確的有( )
A.1個(gè)B.2個(gè)C. 3個(gè)D.4個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段 AB=4,M 為 AB 的中點(diǎn),動(dòng)點(diǎn) P 到點(diǎn) M 的距離是 1,連接 PB,線段
PB 繞點(diǎn) P 逆時(shí)針旋轉(zhuǎn) 90°得到線段 PC,連接 AC,則線段 AC 長(zhǎng)度的最大值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點(diǎn)E.
(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備購(gòu)進(jìn)一批電冰箱和空調(diào),每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商店用8000元購(gòu)進(jìn)電冰箱的數(shù)量與用6400元購(gòu)進(jìn)空調(diào)的數(shù)量相等.
(1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?
(2)已知電冰箱的銷售價(jià)為每臺(tái)2100元,空調(diào)的銷售價(jià)為每臺(tái)1750元.若商店準(zhǔn)備購(gòu)進(jìn)這兩種家電共100臺(tái),其中購(gòu)進(jìn)電冰箱x臺(tái)(33≤x≤40),那么該商店要獲得最大利潤(rùn)應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小型加工廠準(zhǔn)備每天生產(chǎn)甲、乙兩種類型的產(chǎn)品共1000件,原料成本、銷售單價(jià),及工人計(jì)件工資如表:
甲(元/件) | 乙(元/件) | |
原料成本 | 10 | 8 |
銷售單價(jià) | 20 | 16 |
計(jì)件工資 | 2 | 1.5 |
設(shè)該加工廠每天生產(chǎn)甲型產(chǎn)品x件,每天獲得總利潤(rùn)為y元.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)若該工廠每天投人總成本不超過10750元,怎樣安排甲、乙兩種類型的生產(chǎn)量,可使該廠每天所獲得的利潤(rùn)最大?并求出最大利潤(rùn).(總成本=原料成本+計(jì)件工資,利潤(rùn)=銷售收入一投人總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且,.
(1)求拋物線的解析式;
(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C,求面積的最大值;
(3)在(2)中面積最大的條件下,過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D、E分別在△ABC的邊AC、AB上,延長(zhǎng)DE、CB交于點(diǎn)F,且AEAB=ADAC.
(1)求證:∠FEB=∠C;
(2)連接AF,若,求證:EFAB=ACFB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長(zhǎng)線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】11月份臍橙和柚子進(jìn)入銷售旺季,某大型水果超市的臍橙和柚子這兩種水果很受歡迎,臍橙售價(jià)12元/千克,柚子售價(jià)9元/千克.
(1)若第一周臍橙的銷量比柚子的銷量多200千克,要使這兩種水果的銷售總額達(dá)到6600元,則第一周應(yīng)該銷售臍橙多少千克?
(2)若該水果超市第一周按照(1)中臍橙和柚子的銷量銷售這兩種水果,并決定第二周繼續(xù)銷售這兩種水果.第二周臍橙售價(jià)降低了元,銷量比第一周增加了.柚子的售價(jià)保持不變,銷量比第一周增加了,結(jié)果這兩種水果第二周的銷售總額比第一周增加了.求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com