【題目】用適當?shù)姆椒ń庖辉畏匠?/span>

1)(x124

2)(x322x3x

32x2+5x10

4)(x1)(x3)=8

【答案】1x13x2=﹣1;(2x13,x21;(3x1,x2;(4x15,x2=﹣1

【解析】

1)算開方,即可求出x的值.

2)移項和合并同類項,根據(jù)因式分解法求解即可.

3)利用公式法求解即可.

4)先去括號,再利用因式分解法求解即可.

解:(1)開方得:x1±2,

x12x1=﹣2,

x13x2=﹣1;

2))(x32+2xx3)=0,

x3)(x3+2x)=0,

x303x30

x13,x21

3)這里a2,b5,c=﹣1

b24ac254×2×(﹣1)=330,

x,

x1x2;

4)整理為x24x50

x5)(x+1)=0,

x50x+10

x15,x2=﹣1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,D是⊙O上一點,點EAC的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.

(1)求證:AB=BC;

(2)如果AB=5,tanFAC=,求FC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點F在邊BC上,過點FEFBC,且FEFCCECB),連接CE、AE,點GAE的中點,連接FG

1)用等式表示線段BFFG的數(shù)量關(guān)系是  ;

2)將圖1中的△CEF繞點C按逆時針旋轉(zhuǎn),使△CEF的頂點F恰好在正方形ABCD的對角線AC上,點G仍是AE的中點,連接FG、DF

在圖2中,依據(jù)題意補全圖形;

求證:DFFG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,直線ABx軸于點A,交y軸于點B,AB,tanBAO3

1)求直線AB的解析式;

2)直線ykx+b經(jīng)過點Bx軸交于點C,且∠ABC45°,ADBC于點D.動點P從點C出發(fā),沿CB方向以每秒個單位長度的速度向終點B運動,運動時間為t,設△ADP的面積為S,求St的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍.

3)在(2)的條件下,點P在線段BD上,點F在線段AB上,∠APC=∠FPB,連接AP,過點FFGAP于點G,交AD于點H,若DPDH,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,拋物線的頂點為M:平行于x軸的直線與該拋物線交于點A,B(點A在點B左側(cè)),根據(jù)對稱性AMB恒為等腰三角形,我們規(guī)定:當AMB為直角三角形時,就稱AMB為該拋物線的完美三角形

1)如圖2,求出拋物線yx2完美三角形斜邊AB的長;

2)若拋物線yax2+4完美三角形的斜邊長為4,求a的值;

3)若拋物線ymx2+2x+n5完美三角形斜邊長為n,且ymx2+2x+n5的最大值為﹣1,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,OC⊙O的半徑,點D是半圓AB上一動點(不與A、B重合),連結(jié)DC交直徑AB與點E,∠AOC=60°,則∠AED的范圍為(

A.0°< ∠AED <180°B.30°< ∠AED <120°

C.60°< ∠AED <120°D.60°< ∠AED <150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m,分別用、、表示;田賽項目:跳遠,跳高分別用表示

該同學從5個項目中任選一個,恰好是田賽項目的概率為______

該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項目和一個徑賽項目的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,經(jīng)過點A的雙曲線y=(x0)同時經(jīng)過點B,且點A在點B的左側(cè),點A的橫坐標為AOB=OBA=45°,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是正方形ABCD內(nèi)一點,∠APB=135 , BP=1,AP=,求PC的值( 。

A. B. 3 C. D. 2

查看答案和解析>>

同步練習冊答案