【題目】在平面直角坐標(biāo)系中,點的坐標(biāo)分別為滿足,連接.

1)如圖1,若,點是直線上的一個動點,當(dāng)最短時,求的值; 是線段上的一個動點,且滿足于點于點,求的值;

2)如圖2,過點作直線軸,過點,與交于點,與軸交于點分別平分,求的度數(shù).

【答案】1最短時,的值為;(2)∠ANE=45°.

【解析】

1)根據(jù)非負(fù)數(shù)的性質(zhì)可求出a,b,得到點A,B的坐標(biāo),過點AAM’BC于點M’,AM最短時即為AM’,然后根據(jù)可求出AM’的長;連結(jié)CP,根據(jù)可求出;

2)過點NNGAC,則NGACBE,根據(jù)平行線的性質(zhì)和角平分線的定義可求出∠ANE=ANG+GNE=CAN+BEN=(CAB+CEB)= (CAB+ACO)=45°.

解:(1)∵,

a+4=0b-4=0,

a=4b=4,

,

如圖,過點AAM’BC于點M’,AM最短時即為AM’

,即8×3=5 AM’

AM’=,即最短時,的值為;

連結(jié)CP,

,

;

2)過點NNGAC,則NGACBE

∴∠ACO=CEB,∠CAN=ANG,∠BEN=GNE,

AN,EN分別平分

∴∠CAN=CAB,∠BEN=CEB,

∴∠ANE=ANG+GNE=CAN+BEN=(CAB+CEB)= (CAB+ACO)=45°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解方程組;

2)解方程組;

3)解不等式組.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)利用三角函數(shù)測高后,某綜合實踐活動小組實地測量了鳳凰山與中心廣場的相對高度AB,其測量步驟如下:

1)在中心廣場測點C處安置測傾器,測得此時山頂A的仰角∠AFH=30°;

2)在測點C與山腳B之間的D處安置測傾器(C、DB在同一直線上,且C、D之間的距離可以直接測得),測得此時山頂上紅軍亭頂部E的仰角∠EGH=45°;

3)測得測傾器的高度CF=DG=1.5米,并測得CD之間的距離為288米;

已知紅軍亭高度為12米,請根據(jù)測量數(shù)據(jù)求出鳳凰山與中心廣場的相對高度AB.(1.732,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:分式和分?jǐn)?shù)有著很多的相似點.如類比分?jǐn)?shù)的基本性質(zhì),我們得到了分式的基本性質(zhì);類比分?jǐn)?shù)的運算法則,我們得到了分式的運算法則;等等.小學(xué)里,把分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù).類似地,我們把分子整式的次數(shù)小于分母整式的次數(shù)的分式稱為真分式;反之,稱為假分式.任何一個假分式都可以化成整式與真分式的和的形式,如: ;

(1)下列分式中,屬于真分式的是:________(填序號)

(2)將假分式化成整式與真分式的和的形式: ________________;

(3)將假分式化成整式與真分式的和的形式: __________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩江新區(qū)某小學(xué)每年的六一兒童節(jié)都會舉辦不同主題色的童裝盛會,記錄孩子們成長的印記這種活動讓商家們看到了新的商機(jī),某網(wǎng)店獲悉今年的主題色是夢幻紫色,在六一節(jié)前購進(jìn)夢幻紫色系列的A、B兩款童裝共86件,其中A款童裝120元每件.B款童裝80元每件,共用去資金8480.

1)求此網(wǎng)店購AB兩款童裝各多少件?

2)六一兒童節(jié)的童裝盛會反響非常好,引起社會上的童爸童媽們的高度關(guān)注,將這兩款童裝再次推向了熱銷,此網(wǎng)店決定再次購進(jìn)A、B兩款童裝,數(shù)量與上次相同,購進(jìn)時,發(fā)現(xiàn)A款童裝的進(jìn)價上漲了%,B款童裝的進(jìn)價下降了之%,總價不超過9050元,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將一根繩子平放在桌上,用剪刀任意剪n刀(如圖),繩子變成n+1段;若將繩子對折1次后從中間剪一刀(如圖),繩子的刀口 個,繩子變成 段;若將繩子對折2次后從中間剪一刀,繩子的刀口有 個,繩子變成 段;若將繩子對折n次后從中間剪一刀,繩子的刀口 個,繩子變成 段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】徐州地鐵1號線,西起杏山子大道,止于高鐵徐州東站,共設(shè)18座站點,18座站點如下所示.徐州軌道交通試運營期間,小蘇從蘇堤路站開始乘坐地鐵,在地鐵各站點做志愿者服務(wù),到站下車時,本次志愿者服務(wù)活動結(jié)束,約定向徐州東站站方向(即箭頭方向)為正,當(dāng)天的乘車記錄如下(單位:站):,-2,-6,8,3-4,-9,8.

1)請通過計算說明站是哪一站?

2)如果相鄰兩站之間的距離為千米,求這次小蘇志愿服務(wù)期間乘坐地鐵行進(jìn)的總路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.

(1)甲,乙兩公司單獨完成此項工程,各需多少天?

(2)若讓一個公司單獨完成這項工程,哪個公司的施工費較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,CDAB邊上的中線,ECD的中點,過點CAB的平行線交AE的延長線于點F,連接BF

1)求證:四邊形BDCF是菱形;

2)當(dāng)RtABC中的邊或角滿足什么條件時?四邊形BDCF是正方形,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案