(2012•莆田)如圖,一次函數(shù)y=k1x+b的圖象過點(diǎn)A(0,3),且與反比例函數(shù)y=
k2x
(x>O)的圖象相交于B、C兩點(diǎn).
(1)若B(1,2),求k1•k2的值;
(2)若AB=BC,則k1•k2的值是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.
分析:(1)分別利用待定系數(shù)法求函數(shù)解析式求出一次函數(shù)解析式與反比例函數(shù)解析式,然后代入k1•k2進(jìn)行計(jì)算即可得解;
(2)設(shè)出兩函數(shù)解析式,聯(lián)立方程組并整理成關(guān)于x的一元二次方程,根據(jù)AB=BC可知點(diǎn)C的橫坐標(biāo)是點(diǎn)B的橫坐標(biāo)的2倍,再利用根與系數(shù)的關(guān)系整理得到關(guān)于k1、k2的關(guān)系式,整理即可得解.
解答:解:(1)∵A(0,3),B(1,2)在一次函數(shù)y=k1x+b的圖象上,
b=3
k1+b=2

解得
k1=-1
b=3
;
∵B(1,2)在反比例函數(shù)y=
k2
x
圖象上,
k2
1
=2,
解得k2=2,
所以,k1•k2=(-1)×2=-2;

(2)k1•k2=-2,是定值.
理由如下:∵一次函數(shù)的圖象過點(diǎn)A(0,3),
∴設(shè)一次函數(shù)解析式為y=k1x+3,反比例函數(shù)解析式為y=
k2
x
,
∴k1x+3=
k2
x
,
整理得k1x2+3x-k2=0,
∴x1+x2=-
3
k1
,x1•x2=-
k2
k1

∵AB=BC,
∴點(diǎn)C的橫坐標(biāo)是點(diǎn)B的橫坐標(biāo)的2倍,不妨設(shè)x2=2x1,
∴x1+x2=3x1=-
3
k1
,x1•x2=2x12=-
k2
k1
,
∴-
k2
2k1
=(-
3
3k1
2
整理得,k1•k2=-2,是定值.
點(diǎn)評(píng):本題是對(duì)反比例函數(shù)的綜合考查,主要利用了待定系數(shù)法求函數(shù)解析式,根與系數(shù)的關(guān)系,(2)中根據(jù)AB=BC,得到點(diǎn)B、C的坐標(biāo)的關(guān)系從而轉(zhuǎn)化為一元二次方程的根與系數(shù)的關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•莆田)如圖,點(diǎn)C在以AB為直徑的半圓O上,延長(zhǎng)BC到點(diǎn)D,使得CD=BC,過點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)F,點(diǎn)G為DF的中點(diǎn),連接CG、OF、FB.
(1)求證:CG是⊙O的切線;
(2)若△AFB的面積是△DCG的面積的2倍,求證:OF∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•莆田)如圖,在平面直角坐標(biāo)系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一條長(zhǎng)為2012個(gè)單位長(zhǎng)度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A-B-C-D-A-…的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•莆田)如圖,△A′B′C′是由△ABC沿射線AC方向平移2cm得到,若AC=3cm,則A′C=
1
1
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•莆田)如圖,某種新型導(dǎo)彈從地面發(fā)射點(diǎn)L處發(fā)射,在初始豎直加速飛行階段,導(dǎo)彈上升的高度y(km)與飛行時(shí)間x(s)之間的關(guān)系式為y=
1
18
x2+
1
6
x
 (0≤x≤10).發(fā)射3s后,導(dǎo)彈到達(dá)A點(diǎn),此時(shí)位于與L同一水平面的R處雷達(dá)站測(cè)得AR的距離是2km,再過3s后,導(dǎo)彈到達(dá)B點(diǎn).
(1)求發(fā)射點(diǎn)L與雷達(dá)站R之間的距離;
(2)當(dāng)導(dǎo)彈到達(dá)B點(diǎn)時(shí),求雷達(dá)站測(cè)得的仰角(即∠BRL)的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•莆田)如圖,在平面直角坐標(biāo)系中,矩形OABC四個(gè)頂點(diǎn)的坐標(biāo)分別為O(0,0),A(0,3),B(6,3),C(6,0),拋物線y=ax2+bx+c(a≠0)過點(diǎn)A.

(1)求c的值;
(2)若a=-1,且拋物線與矩形有且只有三個(gè)交點(diǎn)A、D、E,求△ADE的面積S的最大值;
(3)若拋物線與矩形有且只有三個(gè)交點(diǎn)A、M、N,線段MN的垂直平分線l過點(diǎn)0,交線段BC于點(diǎn)F.當(dāng)BF=1時(shí),求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案