【題目】如圖,在直角坐標系中,A的圓心A的坐標為(﹣1,0),半徑為1,點P為直線y=﹣x+3上的動點,過點PA的切線,切點為Q,則切線長PQ的最小值是( 。

A.B.C.D.

【答案】C

【解析】

如圖1,連接AP、AQ,根據(jù)切線的性質(zhì)得AQPQ,則利用勾股定理得到PQ=,則當AP最小時,PQ最小,如圖2,直線y=-x+3y軸交于B,與x軸交于點C,則B0,3),C4,0),BC=5,利用垂線段最短得到當APBCP時,AP最小,利用面積法可計算出AP=3,從而得到PQ的最小值.

如圖1,連接APAQ,

PQ為切線,

AQPQ,

RtAPQ中,PQ,

AP最小時,PQ最小,

如圖2,直線y=﹣x+3y軸交于B,與x軸交于點C,則B0,3),C4,0),

BC5,

APBCP時,AP最小,

APBCBOAC,

AP3,

PQ的最小值為2

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線經(jīng)過點A-30)、B(20)、C(04).

(1)求拋物線的解析式;

(2)y軸上找一點D,使得△BOD與△AOC相似,請直接寫出符合條件的點D的坐標;

(3)AC與拋物線的對稱軸交于點E,以A為圓心,AE長為半徑作圓,⊙Ay軸的位置關系如何?請說明理由.

(4)過點E作⊙A的切線EG,交x軸于點G,請求出直線EG的解析式及G點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B. F為圓心,大于 BF的相同長度為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF.若四邊形ABEF的周長為16,C=60°,AG=2,則四邊形ABEF的面積是(

A.8B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點

(1)求證:ABM≌△DCM

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當AD:AB= _時,四邊形MENF是正方形(只寫結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在元旦期間,某商場計劃購進甲、乙兩種商品.

1)已知甲、乙兩種商品的進價分別為30元,70元,該商場購進甲、乙兩種商品共50件需要2300元,則該商場購進甲、乙兩種商品各多少件?

2)該商場共投入9500元資金購進這兩種商品若干件,這兩種商品的進價和售價如表所示:

進價(元/件)

30

70

售價(元/件)

50

100

若全部銷售完后可獲利5000元(利潤=(售價﹣進價)×銷量),則該商場購進甲、乙兩種商品各多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】使得函數(shù)值為0的自變量的值稱為函數(shù)的零點.例如,對于函數(shù)y=x﹣1,令y=0可得x=1,我們說1是函數(shù)y=x﹣1的零點.已知函數(shù)y=x2﹣2mx﹣2(m+3)(m為常數(shù))

(1)當m=0時,求該函數(shù)的零點.

(2)證明:無論m取何值,該函數(shù)總有兩個零點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市實施產(chǎn)業(yè)精準扶貧,幫助貧困戶承包荒山種植某品種蜜柚.已知該蜜柚的成本價為6/千克,到了收獲季節(jié)投入市場銷售時,調(diào)查市場行情后,發(fā)現(xiàn)該蜜柚不會虧本,且每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關系如圖所示.

1)求yx的函數(shù)關系式,并寫出x的取值范圍;

2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?

3)某村農(nóng)戶今年共采摘蜜柚12000千克,若該品種蜜柚的保質(zhì)期為50天,按照(2)的銷售方式,能否在保質(zhì)期內(nèi)全部銷售完這批蜜柚?若能,請說明理由;若不能,應定銷售價為多少元時,既能銷售完又能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:平行四邊形ABCD中,EAB中點,,連E、FACG,則AGGC=______________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了進一步了解八年級學生的身體素質(zhì)情況,體育老師以八年級(1)班50位學生為樣本進行了一分鐘跳繩次數(shù)測試.根據(jù)測試結(jié)果,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖.

組別

次數(shù)x

頻數(shù)(人數(shù))

1

80x100

6

2

100x120

8

3

120x140

a

4

140x160

18

5

160x180

6

請結(jié)合圖表完成下列問題:

1)表中的a   ;

2)請把頻數(shù)分布直方圖補充完整;

3)這個樣本數(shù)據(jù)的中位數(shù)落在第   組;

4)已知該校八年級共有學生800,請你估計一分鐘跳繩次數(shù)不低于120次的八年級學生大約多少名?

查看答案和解析>>

同步練習冊答案