【題目】如圖,在△ABC中,AC=BC,CD是AB邊上的高線,且有2CD=3AB,又E,F(xiàn)為CD的三等分點(diǎn),則∠ACB與∠AEB之和為( )
A. 45° B. 90° C. 75° D. 135°
【答案】B
【解析】
根據(jù)等腰三角形三線合一的特點(diǎn)可知:CD垂直平分AB,利用線段之間的關(guān)系,得到△DBF是等腰直角三角形;再利用勾股定理求得BF、BD的關(guān)系,可得到=,接下來結(jié)合夾角相等證明△EFB∽△BFC,聯(lián)系相似三角形的性質(zhì)及三角形外角的性質(zhì)即可得出結(jié)論.
設(shè)AD=x,
∵AC=BC,CD是AB邊上的高,
∴CD是AB的垂直平分線,CD平分∠ACB,ED平分∠AEB,
∴BD=AD=x,AE=BE,AF=BF,∠ACB=2∠FCB,∠AEB=2∠FEB.
∵2CD=3AB,AD=BD=x,E、F是三等分點(diǎn),
∴CD=3x,DF=EF=CE=DB=x.
又∵∠CDB=90°,
∴△DBF是等腰三角形,
∴∠DBF=45°,BF=x,
∴,,
∴=.
又∵∠EFB=∠BFC,
∴△EFB∽△BFC,
∴∠FBE=∠BCF,∠FEB=∠FBC.
∴∠DFB=∠FBE+∠FEB=∠FCB+∠FBC=45°,
∴∠ACB+∠AEB=2(∠FBE+∠FEB)=90°.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是邊長為3的等邊三角形,點(diǎn)D是邊BC上的一點(diǎn),且BD=1,以AD為邊作等邊△ADE,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F,連接BF,則下列結(jié)論中①△ABD≌△BCF;②四邊形BDEF是平行四邊形;③S四邊形BDEF=;④S△AEF=.其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,PA、PB是⊙O的切線,A、B為切點(diǎn),∠APB=80°,點(diǎn)C是⊙O上不同于A、B的任意一點(diǎn),求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)D,已知∠D=30°.
(1)求∠A的度數(shù);
(2)若點(diǎn)F在⊙O上,CF⊥AB,垂足為E,CF=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m-1)x+m2=0有兩個實(shí)數(shù)根x1、x2,并且滿足x12+x22=1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一水池中有水,如果每分鐘放出的水,水池里的水量與放水時間有如下關(guān)系:
放水時間(分) | 1 | 2 | 3 | 4 | … |
水池中水量 | 38 | 36 | 34 | 32 | … |
下列數(shù)據(jù)中滿足此表格的是( )
A.放水時間8分鐘,水池中水量B.放水時間20分鐘,水池中水量
C.放水時間26分鐘,水池中水量D.放水時間18分鐘,水池中水量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為坐標(biāo)平面上二次函數(shù)的圖形,且此圖形通、兩點(diǎn).下列關(guān)于此二次函數(shù)的敘述,何者正確( )
A. 的最大值小于
B. 當(dāng)時,的值大于
C. 當(dāng)時,的值大于
D. 當(dāng)時,的值小于
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)D為y軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個單位的速度沿線段AC﹣CB的方向運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)B重合時停止運(yùn)動,運(yùn)動時間為t秒.
(1)當(dāng)點(diǎn)P經(jīng)過點(diǎn)C時,求直線DP的函數(shù)解析式;
(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;
②如圖②,把長方形沿著OP折疊,點(diǎn)B的對應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).
(3)點(diǎn)P在運(yùn)動過程中是否存在使△BDP為等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com