【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認為其中錯誤的是( )

A.①②B.②③C.①③D.②④

【答案】B

【解析】

A、四邊形ABCD是平行四邊形,當(dāng)①AB=BC時,平行四邊形ABCD是菱形,

當(dāng)②∠ABC=90°時,菱形ABCD是正方形,故此選項正確,不合題意;

B、四邊形ABCD是平行四邊形,

當(dāng)②∠ABC=90°時,平行四邊形ABCD是矩形,當(dāng)AC=BD時,這是矩形的性質(zhì),無法得出四邊形ABCD是正方形,故此選項錯誤,符合題意;

C、四邊形ABCD是平行四邊形,當(dāng)①AB=BC時,平行四邊形ABCD是菱形,當(dāng)③AC=BD時,菱形ABCD是正方形,故此選項正確,不合題意;

D、四邊形ABCD是平行四邊形,當(dāng)②∠ABC=90°時,平行四邊形ABCD是矩形,當(dāng)④AC⊥BD時,矩形ABCD是正方形,故此選項正確,不合題意.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩點在反比例函數(shù)y= 的圖象上,C,D兩點在反比例函數(shù)y= 的圖象上,AC⊥y軸于點E,BD⊥y軸于點F,AC=2,BD=1,EF=3,則k1﹣k2的值是(
A.6
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,AB,C三點的坐標(biāo)分別為(0,1)、(3,3)、(40).

ISAOC   ;

2)若點Pm1,1)是第二象限內(nèi)一點,且△AOP的面積不大于△ABC的面積,求m的取值范圍;

3)若將線段AB向左平移1個單位長度,點Dx軸上一點,點E4n)為第一象限內(nèi)一動點,連BE、CE、AC,若△ABD的面積等于由ABBE、CE、AC四條線段圍成圖形的面積,則點D的坐標(biāo)為   .(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個直角三角形紙板ABC放置在銳角PMN上,使該直角三角形紙板的兩條直角邊AB,AC分別經(jīng)過點M,N

(發(fā)現(xiàn))

1)如圖1,若點APMN內(nèi),當(dāng)P=30°時,則PMN+PNM=______°,AMN+ANM=______°,PMA+PNA=______°

2)如圖2,若點APMN內(nèi),當(dāng)P=50°時,PMA+PNA=______°

(探究)

3)若點APMN內(nèi),請你判斷PMAPNAP之間滿足怎樣的數(shù)量關(guān)系,并寫出理由.

(應(yīng)用)

4)如圖3,點APMN內(nèi),過點P作直線EFAB,若PNA=16°,則NPE=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一件工藝品的進價為100元,標(biāo)價135元出售,每天可售出100件,根據(jù)銷售統(tǒng)計,一件工藝品每降價1元,則每天可多售出4件,要使每天獲得的利潤最大,則每件需降價( )
A.3.6 元
B.5 元
C.10 元
D.12 元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某港口P位于東西方向的海岸線上,“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16nmile,“海天”號每小時航行12nmile,它們離開港口一個半小時后相距30nmile,且知道“遠航”號沿東北方向航行,那么“海天”號航行的方向是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,FCCD,∠1=∠2,∠B60°.

1)求∠BCF的度數(shù);(2)如果DE是∠ADC的平分線,那么DEAB平行嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+2x+b(a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,上一點,且,過上一點,作,,已知:,則的長是__________

查看答案和解析>>

同步練習(xí)冊答案