作业宝如圖,頂點(diǎn)為A的拋物線y=a(x+2)2-4交x軸于點(diǎn)B(1,0),連接AB,過原點(diǎn)O作射線OM∥AB,過點(diǎn)A作AD∥x軸交OM于點(diǎn)D,點(diǎn)C為拋物線與x軸的另一個(gè)交點(diǎn),連接CD.
(1)求拋物線的解析式(關(guān)系式);
(2)求點(diǎn)A,B所在的直線的解析式(關(guān)系式);
(3)若動點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度沿著射線OM運(yùn)動,設(shè)點(diǎn)P運(yùn)動的時(shí)間為t秒,問:當(dāng)t為何值時(shí),四邊形ABOP分別為平行四邊形?等腰梯形?
(4)若動點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度沿線段OD向點(diǎn)D運(yùn)動,同時(shí)動點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長度的速度沿線段CO向點(diǎn)O運(yùn)動,當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)它們的運(yùn)動時(shí)間為t秒,連接PQ.問:當(dāng)t為何值時(shí),四邊形CDPQ的面積最小?并求此時(shí)PQ的長.

解:(1)把(1,0)代入y=a(x+2)2-4,
得a=
∴y=(x+2)2-4,
即y=x2+x-

(2)設(shè)直線AB的解析式是y=kx+b.
∵點(diǎn)A(-2,-4),點(diǎn)B(1,0),
 
解得
∴y=x-

(3)由題意得OP=t,AB==5.
若四邊形ABOP為平行四邊形,則OP=AB=5,即當(dāng)t=5時(shí),四邊形ABOP為平行四邊形.
若四邊形ABOP為等腰梯形,連接AP,過點(diǎn)P作PG⊥AB,過點(diǎn)O作OH⊥AB,垂足分別為G、H.
∴△APG≌△BOH.
在Rt△OBM中,
∵OM=,OB=1,
∴BM=
∴OH=
∴BH=
∴OP=GH=AB-2BH=
即當(dāng)t=時(shí),四邊形ABOP為等腰梯形.

(4)將y=0代入y= x2+x-,得 x2+x-=0,
解得x=1或-5.
∴C(-5,0).
∴OC=5.
∵OM∥AB,AD∥x軸,
∴四邊形ABOD是平行四邊形.
∴AD=OB=1.
∴點(diǎn)D的坐標(biāo)是(-3,-4).
∴S△DOC=×5×4=10.
過點(diǎn)P作PN⊥BC,垂足為N.易證△OPN∽△BOH.
,

∴PN=t.
∴四邊形CDPQ的面積S=S△DOC-S△OPQ=10-×(5-2t)×t=t2-2t+10.
∴當(dāng)t=時(shí),四邊形CDPQ的面積S最。
此時(shí),點(diǎn)P的坐標(biāo)是(-,-1),點(diǎn)Q的坐標(biāo)是(-,0),
∴PQ==
分析:(1)將點(diǎn)B的坐標(biāo)代入到拋物線的解析式中即可求得a值,從而求得其解析式;
(2)將點(diǎn)A和點(diǎn)B的坐標(biāo)代入到直線的解析式利用待定系數(shù)法確定其解析式即可;
(3)利用兩點(diǎn)坐標(biāo)求得線段AB的長,然后利用平行四邊形的對邊相等求得t=5時(shí),四邊形ABOP為平行四邊形;若四邊形ABOP為等腰梯形,連接AP,過點(diǎn)P作PG⊥AB,過點(diǎn)O作OH⊥AB,垂足分別為G、H,根據(jù)△APG≌△BOH求得線段OP=GH=AB-2BH=
(4)首先判定四邊形ABOD是平行四邊形,然后確定S△DOC=×5×4=10.過點(diǎn)P作PN⊥BC,垂足為N,利用△OPN∽△BOH得到PN=t,然后表示出四邊形CDPQ的面積S=S△DOC-S△OPQ=10-×(5-2t )×t=t2-2 t+10,從而得到當(dāng)t=時(shí),四邊形CDPQ的面積S最。缓蟮玫近c(diǎn)P的坐標(biāo)是(-,-1),點(diǎn)Q的坐標(biāo)是(-,0),利用兩點(diǎn)坐標(biāo)公式確定PQ的長即可.
點(diǎn)評:本題考查了二次函數(shù)的綜合知識,往往是中考的壓軸題目,難度比較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)如圖,在10×10的網(wǎng)格中,每個(gè)小方格都是邊長為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).若拋物線經(jīng)過圖中的三個(gè)格點(diǎn),則以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為拋物線的“內(nèi)接格點(diǎn)三角形”.以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個(gè)交點(diǎn)之間的距離為3
2
,且這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn)是拋物線的內(nèi)接格點(diǎn)三角形的三個(gè)頂點(diǎn),則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一個(gè)隧道的橫截面成拋物線形,它的底部寬12米、高6米.車輛在此隧道可以雙向通行,但規(guī)定車輛必須在隧道的中心線右側(cè)、距離路邊緣2米這一范圍內(nèi)行駛,并保持車輛頂部與隧道的空隙不少于
13
米.
(1)畫出以拋物線的頂點(diǎn)為原點(diǎn)的直角坐標(biāo)系;
(2)在第(1)小題的基礎(chǔ)上,求該隧道橫截面的拋物線的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)你能否根據(jù)題中的要求,應(yīng)用已有的二次函數(shù)知識,確定通過隧道車輛的高度不能超過多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在10×10的網(wǎng)格中,每個(gè)小方格都是邊長為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).若拋物線經(jīng)過圖中的三個(gè)格點(diǎn),則以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為拋物線的“內(nèi)接格點(diǎn)三角形”.以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個(gè)交點(diǎn)之間的距離為,且這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn)是拋物線的內(nèi)接格點(diǎn)三角形的三個(gè)頂點(diǎn),則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( 。

 

A.

16

B.

15

C.

14

D.

13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年海南省?谑兄锌紨(shù)學(xué)模擬試卷(九)(解析版) 題型:解答題

如圖,一個(gè)隧道的橫截面成拋物線形,它的底部寬12米、高6米.車輛在此隧道可以雙向通行,但規(guī)定車輛必須在隧道的中心線右側(cè)、距離路邊緣2米這一范圍內(nèi)行駛,并保持車輛頂部與隧道的空隙不少于米.
(1)畫出以拋物線的頂點(diǎn)為原點(diǎn)的直角坐標(biāo)系;
(2)在第(1)小題的基礎(chǔ)上,求該隧道橫截面的拋物線的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)你能否根據(jù)題中的要求,應(yīng)用已有的二次函數(shù)知識,確定通過隧道車輛的高度不能超過多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:選擇題

如圖,在10×10的網(wǎng)格中,每個(gè)小方格都是邊長為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).若拋物線經(jīng)過圖中的三個(gè)格點(diǎn),則以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為拋物線的“內(nèi)接格點(diǎn)三角形”.以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個(gè)交點(diǎn)之間的距離為,且這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn)是拋物線的內(nèi)接格點(diǎn)三角形的三個(gè)頂點(diǎn),則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是

A.16               B.15               C.14               D.13

 

查看答案和解析>>

同步練習(xí)冊答案