【題目】如圖,AE∥BF,AC平分∠BAD,交BF于點(diǎn)C,BD平分∠ABC,交AE于點(diǎn)D,連接CD.
(1)若AB=1,則BC的長=;
(2)求證:四邊形ABCD是菱形.
【答案】
(1)1
(2)證明:∵AC平分∠BAD,
∴∠BAC=∠CAD,
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠BAC=∠BCA,
∴BC=BA,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵AD∥BC,
∴∠ADB=∠BDC,
∴∠ABD=∠ADB,
∴AB=AD,
∴AD=BC,
∵AD∥BC,
∴四邊形ABCD是平行四邊形,
∵AB=AD,
∴四邊形ABCD是菱形.
【解析】(1)解:∵AC平分∠BAD, ∴∠BAC=∠CAD,
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠BAC=∠BCA,
∴BC=BA=1.
所以答案是1.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解菱形的判定方法的相關(guān)知識,掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把多項(xiàng)式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是( )
A. m+1 B. 2m C. 2 D. m+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,弦AB=弦CD,AB⊥CD于點(diǎn)E,且AE<EB,CE<ED,連結(jié)AO,DO,BD.
(1)求證:EB=ED.
(2)若AO=6,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中E是BC上的一點(diǎn),EC=2BE,點(diǎn)D是AC的中點(diǎn),設(shè)△ABC,△ADF,△BEF的面積分別為S△ABC , S△ADF , S△BEF , 且S△ABC=12,則S△ADF﹣S△BEF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一般的二次函數(shù)y=x2+bx+c,經(jīng)過配方可化為y=(x﹣1)2+2,則b,c的值分別為( )
A.5,﹣1
B.2,3
C.﹣2,3
D.﹣2,﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=6,CB=8,點(diǎn)P與點(diǎn)Q分別是AB、CB邊上的動(dòng)點(diǎn),點(diǎn)P與點(diǎn)Q同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長度的速度從點(diǎn)A→點(diǎn)B運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位長度的速度從點(diǎn)C→點(diǎn)B運(yùn)動(dòng).當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).(設(shè)運(yùn)動(dòng)時(shí)間為t秒)
(1)如果存在某一時(shí)刻恰好使QB=2PB,求出此時(shí)t的值;
(2)在(1)的條件下,求圖中陰影部分的面積(結(jié)果保留整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com