拋物線與y軸交于(0,4)點.

(1)   求出m的值;并畫出此拋物線的圖象;

(2)   求此拋物線與x軸的交點坐標(biāo);

(3)   結(jié)合圖象回答:x取什么值時,函數(shù)值y>0?

 

 

 

【答案】

解:(1)由題意得,m-1=4,解得,m=5     圖略.     

(2)拋物線的解析式為y=-x2+4

 由題意,得,-x2+4=0.

 解得,

所以拋物線與x軸的交點坐標(biāo)為(2,0),(-2,0)

(3)-2<x<2

【解析】(1)將點(0,3)代入拋物線的解析式中,即可求得m的值;

(2)可以令y=0,可得出一個關(guān)于x的一元二次方程,方程的解就是拋物線與x軸交點的橫坐標(biāo);

(3)根據(jù)(2)中拋物線與x軸的交點以及拋物線的開口方向即可求得x的取值范圍.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于A,B兩點,A在B的左側(cè),A坐標(biāo)為(-1,0)與y軸交于點C(0,3)△ABC的面積為6.
(1)求拋物線的解析式;
(2)拋物線的對稱軸與直線BC相交于點M,點N為x軸上一點,當(dāng)以M,N,B為頂點的三角形與△ABC相似時,請你求出BN的長度;
(3)設(shè)拋物線的頂點為D在線段BC上方的拋物線上是否存在點P使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莒南縣一模)已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點C(0,4)與x軸交于點A、B,點B(4,0),拋物線的對稱軸為x=1.直線AD交拋物線于點D(2,m),
(1)求二次函數(shù)的解析式并寫出D點坐標(biāo);
(2)點Q是線段AB上的一動點,過點Q作QE∥AD交BD于E,連結(jié)DQ,當(dāng)△DQE的面積最大時,求點Q的坐標(biāo);
(3)拋物線與y軸交于點C,直線AD與y軸交于點F,點M為拋物線對稱軸上的動點,點N在x軸上,當(dāng)四邊形CMNF周長取最小值時,求出滿足條件的點M和點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=-x2+mx+n經(jīng)過點A(1,0),B(6,0).
(1)求拋物線的解析式;
(2)拋物線與y軸交于點D,求△ABD的面積;
(3)當(dāng)y<0,直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+mx-
14
m2(m>0)與x軸交于A、B兩點.
(1)求證:拋物線的對稱軸在y軸的左側(cè);
(2)設(shè)拋物線與y軸交于點C,若∠ACB=90°,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖甲所示,已知拋物線經(jīng)過原點O和x軸上另一點E,頂點M的坐標(biāo)為(2,4);
(1)求拋物線函數(shù)關(guān)系式;
(2)矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個單位長度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖乙所示).
①當(dāng)t=
52
時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由;
③現(xiàn)將甲圖中的拋物線向右平移m(m>0)個單位,所得拋物線與x軸交于G、F兩點,與原拋物線交于點Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案