【題目】如圖,中,,,若點為射線上一動點,連接,將線段AE繞著點逆時針旋轉得到.
(1)如圖,當點在線段上運動時;
①若,則_______ (直接寫出答案);
②過點作交于點,求證:;
(2)當點在射線上,(如圖2) 連接與直線交于點,若,求的值.
【答案】(1)①60°;②見解析;(2)或
【解析】
(1)①由旋轉的性質可得∠EAF=90°,再根據角的和差求出∠CAE的度數,然后根據∠FAC=∠EAF-∠CAE計算即可;
②通過證明形△ADF≌△EAC得到:AD=CE,FD=AC,再利用等量代換即可證明結論成立;
(2)分兩種情況求解:①當點E在線段CB的延長線上時,過F作FD⊥AG的延長線交于點D,易證,由(1)可知△ADF≌△ECA,△GDF≌△GCB,可得CG=GD,AD=CE,即可求得的值,即可解題;②當點E在線段CB的上時.過F作FD⊥AG點D,與①同理即可求解.
證明:(1)①由旋轉的性質得∠EAF=90°,
∵,,
∴,
∴∠FAC=90°-30°=60°;
②∵∠FAD+∠CAE=90°,∠FAD+∠AFD =90°,
∴∠CAE=∠AFD,
在△ADF和△ECA中,
,
∴△ADF≌△ECA(AAS),
∴AD=EC,FD=AC,
∴CE+CD=AD+CD=AC=FD,即EC+CD=DF;
(2)①當點E在線段CB的延長線上時,過F作FD⊥AC的延長線交于點D,如圖2,
∵,BC=AC,CE=CB+BE,
∴,
由(1)知:△ADF≌△ECA,
∴AD=CE,DF=AC,
∴,
∴,
∵AC=BC,DF=AC,
∴DF=BC,
又∵∠FGD=∠BGC,∠D=∠BCG=90°,
∴△GDF≌△GCB,
∴DG=CG,
∴,
∴;
②當點E在線段CB的上時,過F作FD⊥AC于點D,如圖3,
∵, BC=CE+BE,
∴,
∵BC=AC,
∴,
由(1)知:△ADF≌△ECA,
∴AD=CE,DF=AC,
∴,
∴,
∵AC=BC,DF=AC,
∴DF=BC,
又∵∠FGD=∠BGC,∠ADF=∠BCG=90°,
∴△GDF≌△GCB,
∴DG=CG,
∴,
∴.
綜上可知,的值是或.
故答案為:或.
科目:初中數學 來源: 題型:
【題目】如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數y=(k≠0)的圖象經過點B.
(1)求反比例函數的解析式;
(2)若點E恰好落在反比例函數y=上,求平行四邊形OBDC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D在⊙O的直徑AB的延長線上,CD切⊙O于點C,AE⊥CD于點E
(1)求證:AC平分∠DAE;
(2)若AB=6,BD=2,求CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數交軸于點、,交軸于點,在軸上有一點,連接.
(1)求二次函數的表達式;
(2)若點為拋物線在軸負半軸上方的一個動點,求面積的最大值;
(3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標,若不存在請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若我們規(guī)定三角“”表示為:abc;方框“”表示為:(xm+yn).例如:=1×19×3÷(24+31)=3.請根據這個規(guī)定解答下列問題:
(1)計算:= ______ ;
(2)代數式為完全平方式,則k= ______ ;
(3)解方程:=6x2+7.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司生產的某種時令商品每件成本為20元,經過市場調研發(fā)現(xiàn),這種商品在未來40天內的日銷售量m(件)與時間t(天)的關系滿足:m=﹣2t+96.且未來40天內,前20天每天的價格y1(元/件)與時間t(天)的函數關系式為y1=t+25(1≤t≤20且t為整數),后20天每天的價格y2(元/件)與時間t(天)的函數關系式為y2=﹣t+40(21≤t<40且t為整數).下面我們就來研究銷售這種商品的有關問題
(1)請分別寫出未來40天內,前20天和后20天的日銷售利潤w(元)與時間t的函數關系式;
(2)請預測未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)在實際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利潤(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤隨時間t(天)的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AD垂直BC于點D,且AD=BC,BC上方有一動點P滿足,則點P到B、C兩點距離之和最小時,∠PBC的度數為( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com