分析 作FM⊥AD于M,則MF=DC=3a,由矩形的性質(zhì)得出∠C=∠D=90°.由折疊的性質(zhì)得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF中,由三角函數(shù)求出FP即可.
解答 解:作FM⊥AD于M,如圖所示:
則MF=DC=3a,
∵四邊形ABCD是矩形,
∴∠C=∠D=90°.
∵DC=3DE=3a,
∴CE=2a,
由折疊的性質(zhì)得:PE=CE=2a=2DE,∠EPF=∠C=90°,
∴∠DPE=30°,
∴∠MPF=180°-90°-30°=60°,
在Rt△MPF中,∵sin∠MPF=$\frac{MF}{FP}$,
∴FP=$\frac{MF}{sin60°}$=$\frac{3a}{\frac{\sqrt{3}}{2}}$=2$\sqrt{3}$a;
故答案為:2$\sqrt{3}$a.
點(diǎn)評(píng) 本題考查了折疊的性質(zhì)、矩形的性質(zhì)、三角函數(shù)等知識(shí);熟練掌握折疊和矩形的性質(zhì),求出∠DPE=30°是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x+5 | B. | y=x+10 | C. | y=-x+5 | D. | y=-x+10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com