【題目】RtABO中,∠AOB=90°,OA=,OB=4,分別以OA、OB邊所在的直線建立平面直角坐標(biāo)系,Dx軸正半軸上一點(diǎn),以OD為一邊在第一象限內(nèi)作等邊ODE.

(1)如圖①,當(dāng)E點(diǎn)恰好落在線段AB上時(shí),求E點(diǎn)坐標(biāo);

(2)在()問的條件下,將ODE沿x軸的正半軸向右平移得到O′D′E′,O′E′、D′E′分別交AB于點(diǎn)G、F(如圖②)求證OO′=E′F;

(3)若點(diǎn)D沿x軸正半軸向右移動(dòng),設(shè)點(diǎn)D到原點(diǎn)的距離為x,ODEAOB重疊部分的面積為y,請(qǐng)直接寫出yx的函數(shù)關(guān)系式.

【答案】(1)E(1,);(2)證明見解析;(3)見解析.

【解析】(1)由題意作輔助線,作EHOB于點(diǎn)H,由BO=4,求得OE,然后求出OH,EH,從而得出點(diǎn)E的坐標(biāo);

(2)假設(shè)存在,由OO′=4-2-DB,而DF=DB,從而得到OO′=EF;

(3)根據(jù)題意分三種情況寫出解析式即可.

(1)作EH⊥OB于點(diǎn)H,

tan∠ABO===,

∴∠ABO=30°,

∵△OED是等邊三角形,

∴∠EOD=60°.

又∵∠ABO=30°,

∴∠OEB=90°.

∵BO=4,

∴OE=OB=2.

∵△OEH是直角三角形,且∠OEH=30°

∴OH=1,EH=

∴E(1,);

(2)∵∠ABO=30°,∠EDO=60°,

∴∠ABO=∠DFB=30°,

∴D′F=D′B.

∴OO′=4﹣2﹣D′B=2﹣D′B=2﹣D′F=E′D′﹣FD′=E′F;

(3)當(dāng)0<x≤2時(shí),△ODE與△AOB重疊部分的面積為△ODE面積=x2,

當(dāng)2<x<4時(shí),△ODE與△AOB重疊部分的面積為四邊形GO′DF面積=﹣x2+2x﹣2,

當(dāng)x≥4時(shí),△ODE與△AOB重疊部分的面積為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(﹣1,0)、B(3,0)、N(2,3)三點(diǎn),且與y軸交于點(diǎn)C.

(1)求這個(gè)二次函數(shù)的解析式,并寫出頂點(diǎn)M及點(diǎn)C的坐標(biāo);

(2)若直線y=kx+d經(jīng)過C、M兩點(diǎn),且與x軸交于點(diǎn)D,試證明四邊形CDAN是平行四邊形;

(3)點(diǎn)P是這個(gè)二次函數(shù)的對(duì)稱軸上一動(dòng)點(diǎn),請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),并且與直線CD相切?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的弦AD∥BC,過點(diǎn)D的切線交BC的延長(zhǎng)線于點(diǎn)E,AC∥DE交BD于點(diǎn)H,DO及其延長(zhǎng)線分別交AC,BC于點(diǎn)G,F(xiàn).

(1)求證:DF垂直平分AC;

(2)若弦AD=10,AC=16,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個(gè)條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A,B,點(diǎn)A、B的橫坐標(biāo)分別為1,﹣2,一次函數(shù)圖象與y軸的交于點(diǎn)C,與x軸交于點(diǎn)D.

(1)求一次函數(shù)的解析式;

(2)對(duì)于反比例函數(shù)y=,當(dāng)y﹣1時(shí),寫出x的取值范圍;

(3)在第三象限的反比例圖象上是否存在一個(gè)點(diǎn)P,使得SODP=2SOCA?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:EFAD,∠1=2,∠B=55°,求∠BDG的大。

請(qǐng)同學(xué)們?cè)谙旅娴臋M線上把解答過程補(bǔ)充完整:

解:∵ EF//AD,   (已知)

∴ ∠2=3, (           )

又∵ ∠1=2, (已知)

∴ ∠1=3, (等量代換)

∴        (內(nèi)錯(cuò)角相等,兩直線平行)

∴ ∠B+∠BDG=180°, (            )

∵ ∠B=55°,  (已知)

∴ ∠BDG =    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是長(zhǎng)方形, A=B=C=D=90°ABCD,AB=CD=4,AD=BC=6,點(diǎn)A的坐標(biāo)為(3,2).動(dòng)點(diǎn)P的運(yùn)動(dòng)速度為每秒a個(gè)單位長(zhǎng)度,動(dòng)點(diǎn)Q的運(yùn)動(dòng)速度為每秒b個(gè)單位長(zhǎng)度,且.設(shè)運(yùn)動(dòng)時(shí)間為t,動(dòng)點(diǎn)P、Q相遇則停止運(yùn)動(dòng).

(1) ab的值;

(2) 動(dòng)點(diǎn)P,Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P沿長(zhǎng)方形ABCD的邊界逆時(shí)針方向運(yùn)動(dòng),點(diǎn)Q沿長(zhǎng)方形ABCD的邊界順時(shí)針方向運(yùn)動(dòng),當(dāng)t為何值時(shí)PQ兩點(diǎn)相遇?求出相遇時(shí)P、Q所在位置的坐標(biāo);

(3) 動(dòng)點(diǎn)P從點(diǎn)A出發(fā),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)D出發(fā):

①若點(diǎn)PQ均沿長(zhǎng)方形ABCD的邊界順時(shí)針方向運(yùn)動(dòng),t為何值時(shí),PQ兩點(diǎn)相遇?求出相遇時(shí)P、Q所在位置的坐標(biāo);

②若點(diǎn)P、Q均沿長(zhǎng)方形ABCD的邊界逆時(shí)針方向運(yùn)動(dòng),t為何值時(shí),P、Q兩點(diǎn)相遇?求出相遇時(shí)PQ所在位置的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】D是△ABC內(nèi)一點(diǎn),那么,在下列結(jié)論中錯(cuò)誤的是( ).

A. BD+CD>BCB. ∠BDC>∠AC. BD>CDD. AB+AC>BD+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)大小一樣的直角三角形重疊在一起,將其中一個(gè)三角形沿著點(diǎn)B到點(diǎn)C的方向平移到△DEF的位置,AB10,DH4,平移距離為6,則陰影部分面積是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案