分析 (1)先根據(jù)A點和B點坐標(biāo)得到正方形的邊長,則BC=3,于是可得到C(3,-2),然后利用待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式;
(2)通過解關(guān)于反比例函數(shù)解析式與一次函數(shù)的解析式所組成的方程組可得到M點的坐標(biāo);
(3)根據(jù)函數(shù)的圖象結(jié)合交點即可求得.
解答 解:(1)∵點A的坐標(biāo)為(0,1),點B的坐標(biāo)為(0,-2),
∴AB=1+2=3,
∵四邊形ABCD為正方形,
∴Bc=3,
∴C(3,-2),
把C(3,-2)代入y=$\frac{k}{x}$得k=3×(-2)=-6,
∴反比例函數(shù)解析式為y=-$\frac{6}{x}$,
把C(3,-2),A(0,1)代入y=ax+b得$\left\{\begin{array}{l}{3a+b=-2}\\{b=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$,
∴一次函數(shù)解析式為y=-x+1;
(2)解方程組$\left\{\begin{array}{l}{y=-x+1}\\{y=-\frac{6}{x}}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$,
∴M點的坐標(biāo)為(-2,3);
(3)∵一次函數(shù)的值與反比例函數(shù)的圖象的兩個交點是M(-2,3),C(3,-2),
∴由圖象可知,x的取值范圍是x<-2或0<<3.
點評 本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.
科目:初中數(shù)學(xué) 來源: 題型:解答題
組別 | 捐款額x/元 | 人數(shù) |
A | 1≤x<10 | a |
B | 10≤x<20 | 100 |
C | 20≤x<30 | 200 |
D | 30≤x<40 | 140 |
E | 40≤x | 40 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 28° | B. | 52° | C. | 62° | D. | 72° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com