【題目】為了追求更合適的出行體驗(yàn),利用網(wǎng)絡(luò)呼叫專車的打車方式受到大眾歡迎.據(jù)了解在非高峰期時(shí),某種專車所收取的費(fèi)用(元)與行駛里程 的函數(shù)關(guān)系如圖所示,請根據(jù)圖象解答下列問題:
()求與之間的函數(shù)關(guān)系式.
()若專車低還行駛(時(shí)速),每分鐘另加元的低速費(fèi)(不足分鐘的部分按分鐘計(jì)算).某乘客有一次在非高峰期乘坐專車,途中低速行駛了分鐘,共付費(fèi)元,求這位乘客坐專車的行駛里程.
【答案】(1);(2)11km.
【解析】試題分析:(1)設(shè)出租車行駛里程費(fèi)用y(元)與行駛里程x(km)的函數(shù)關(guān)系表達(dá)式,利用待定系數(shù)法求得函數(shù)解析式即可.
(2)因車費(fèi)為元,知行駛里程超過,由題意,得方程,解方程即可.
試題解析:()①當(dāng)時(shí), ;
②當(dāng)時(shí),設(shè)表達(dá)式為,將坐標(biāo), ,
代入得: ,
解得: , ,則,
綜上所述,y關(guān)于x的解析式.
()∵車費(fèi)為32元,
∴行駛里程超過3km,
由題意,2.2x+5.4+0.6×6=32,解得x=11,
答:該乘客乘車?yán)锍虨?/span>11km.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,AB=AC=10,BC=12,D為底邊BC的中點(diǎn),以D為頂點(diǎn)的角∠PDQ=∠B.
(1)如圖1,若射線DQ經(jīng)過點(diǎn)A,DP交AC邊于點(diǎn)E,直接寫出與△CDE相似的三角形;
(2)如圖2,若射線DQ交AB于點(diǎn)F,DP交AC邊于點(diǎn)E,設(shè)AF=x,AE為y,試寫出y與x的函數(shù)關(guān)系式;(不要求寫出自變量的取值范圍)
(3)在(2)的條件下,連接EF,則△DEF與△CDE相似嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩條互相平行的河岸,在河岸一邊測得AB為20米,在另一邊測得CD為70米,用測角器測得∠ACD=30°,測得∠BDC=45°,求兩條河岸之間的距離.(, ≈1.7,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB分別交y軸、x軸于A、B兩點(diǎn),OA=2,tan∠ABO=0.5,拋物線y=﹣x2+bx+c過A、B兩點(diǎn).
(1)求直線AB和這個(gè)拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,求△ABD的面積;
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN的長度L有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于, 兩點(diǎn),交軸于點(diǎn),直線經(jīng)過坐標(biāo)原點(diǎn),與拋物線的一個(gè)交點(diǎn)為,與拋物線的對稱交于點(diǎn),連接,點(diǎn), 的坐標(biāo)分別為, .
()求拋物線的解析式,并分別求出點(diǎn)和點(diǎn)的坐標(biāo).
()在拋物線上是否存在點(diǎn),使≌,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90,D為BC邊上的中點(diǎn),DE⊥AB,垂足為點(diǎn)E,過點(diǎn)B作BF∥AC交DE的延長線于點(diǎn)F,連接CF.
(1)求證:AD⊥CF;
(2)連接AF,試判斷△ACF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖1和圖2都是由8個(gè)一樣大小的小長方形拼成的,且圖2中的小正方形(陰影部分)的面積為1cm2,則小長方形的周長等于__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com