【題目】如圖,已知拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A(﹣1,0)、B(3,0)兩點(diǎn).

(1)求拋物線(xiàn)的解析式和頂點(diǎn)坐標(biāo);

(2)點(diǎn)P為拋物線(xiàn)上一點(diǎn),若SPAB=10,求出此時(shí)點(diǎn)P的坐標(biāo).

【答案】(1)y=x2-2x-3,(1,-4)(2)(-2,3)(4,3)

【解析】

(1)把A、B兩點(diǎn)坐標(biāo)代入拋物線(xiàn)解析式,利用待定系數(shù)法可求得其解析式,再化為頂點(diǎn)式即可求得其頂點(diǎn)坐標(biāo);

(2)設(shè)P(x,y),根據(jù)三角形的面積公式以及SPAB=10,即可算出y的值,代入拋物線(xiàn)解析式即可得出點(diǎn)P的坐標(biāo).

(1)∵拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)兩點(diǎn),
,解得,
∴拋物線(xiàn)解析式為y=x2-2x-3=(x-1)2-4,
∴頂點(diǎn)坐標(biāo)為(1,-4);

(2)∵A(-1,0)、B(3,0),
∴AB=4.
設(shè)P(x,y),則SPAB=AB|y|=2|y|=10,
∴|y|=5,
∴y=±5.
①當(dāng)y=5時(shí),x2-2x-3=5,解得:x1=-2,x2=4,
此時(shí)P點(diǎn)坐標(biāo)為(-2,5)或(4,5);
②當(dāng)y=-5時(shí),x2-2x-3=-5,方程無(wú)解;
綜上所述,P點(diǎn)坐標(biāo)為(-2,5)或(4,5).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 中,,將線(xiàn)段繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線(xiàn)段,旋轉(zhuǎn)角為,且,連接、

(1)如圖 1,當(dāng)時(shí),的大小為   ;

(2)如圖 2,當(dāng)時(shí),的大小為   ;

(提示:可以作點(diǎn)D關(guān)于直線(xiàn)BC的對(duì)稱(chēng)點(diǎn))

(3)當(dāng)   ° 時(shí),可使得的大小與(1)中的結(jié)果相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,拋物線(xiàn)y=ax2+bx+c的對(duì)稱(chēng)軸為x=,與x軸的一個(gè)交點(diǎn)A(,0),拋物線(xiàn)的頂點(diǎn)B縱坐標(biāo)1<yB<2,則以下結(jié)論:①abc<0;b2-4ac>0;3a-b=0;4a+c<0;<a<.其中正確結(jié)論的個(gè)數(shù)是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠C=90°,AC=20cm,BC=15cm.現(xiàn)有動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC向點(diǎn)C方向運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線(xiàn)段CB也向點(diǎn)B方向運(yùn)動(dòng).如果點(diǎn)P的速度是4cm/秒,點(diǎn)Q的速度是2cm/秒,它們同時(shí)出發(fā),當(dāng)有一點(diǎn)到達(dá)所在線(xiàn)段的端點(diǎn)時(shí),就停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)用含t的代數(shù)式表示RtCPQ的面積S;

(2)當(dāng)t=3秒時(shí),P、Q兩點(diǎn)之間的距離是多少?

(3)當(dāng)t為多少秒時(shí),以點(diǎn)C、P、Q為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)、寬都為4m,高為3m的房間的正中央的天花板上懸掛著一只白熾燈泡,為了集中光線(xiàn),加上了燈罩(如圖所示).已知燈罩深A(yù)N=8cm,燈泡離地面2m,為了使光線(xiàn)恰好照在墻角D、E處,燈罩的直徑BC應(yīng)為多少?(結(jié)果保留兩位小數(shù),≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某水平地面上建筑物的高度為AB在點(diǎn)D和點(diǎn)F處分別豎立高是2米的標(biāo)桿CDEF,兩標(biāo)桿相隔52,并且建筑物AB標(biāo)桿CDEF在同一豎直平面內(nèi),從標(biāo)桿CD后退2米到點(diǎn)G,G處測(cè)得建筑物頂端A和標(biāo)桿頂端C在同一條直線(xiàn)上從標(biāo)桿FE后退4米到點(diǎn)H,H處測(cè)得建筑物頂端A和標(biāo)桿頂端E在同一條直線(xiàn)上求建筑物的高

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司2017年初剛成立時(shí)投資1000萬(wàn)元購(gòu)買(mǎi)新生產(chǎn)線(xiàn)生產(chǎn)新產(chǎn)品,此外,生產(chǎn)每件該產(chǎn)品還需要成本40元.按規(guī)定,該產(chǎn)品售價(jià)不得低于60元/件且不超過(guò)160元/件,且每年售價(jià)確定以后不再變化,該產(chǎn)品的年銷(xiāo)售量(萬(wàn)件)與產(chǎn)品售價(jià)元)之間的函數(shù)關(guān)系如圖所示.

(1)求之間的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

(2)求2017年該公司的最大利潤(rùn)?

(3)在2017年取得最大利潤(rùn)的前提下,2018年公司將重新確定產(chǎn)品售價(jià),能否使兩年共盈利達(dá)980萬(wàn)元.若能,求出2018年產(chǎn)品的售價(jià);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、D、C、F在同一條直線(xiàn)上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】農(nóng)經(jīng)公司以30/千克的價(jià)格收購(gòu)一批農(nóng)產(chǎn)品進(jìn)行銷(xiāo)售,為了得到日銷(xiāo)售量p(千克)與銷(xiāo)售價(jià)格x(元/千克)之間的關(guān)系,經(jīng)過(guò)市場(chǎng)調(diào)查獲得部分?jǐn)?shù)據(jù)如下表:

銷(xiāo)售價(jià)格x(元/千克)

30

35

40

45

50

日銷(xiāo)售量p(千克)

600

450

300

150

0

(1)請(qǐng)你根據(jù)表中的數(shù)據(jù),用所學(xué)過(guò)的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定px之間的函數(shù)表達(dá)式;

(2)農(nóng)經(jīng)公司應(yīng)該如何確定這批農(nóng)產(chǎn)品的銷(xiāo)售價(jià)格,才能使日銷(xiāo)售利潤(rùn)最大?

(3)若農(nóng)經(jīng)公司每銷(xiāo)售1千克這種農(nóng)產(chǎn)品需支出a元(a>0)的相關(guān)費(fèi)用,當(dāng)40≤x≤45時(shí),農(nóng)經(jīng)公司的日獲利的最大值為2430元,求a的值.(日獲利=日銷(xiāo)售利潤(rùn)﹣日支出費(fèi)用)

查看答案和解析>>

同步練習(xí)冊(cè)答案