【題目】如圖所示,拋物線y=ax2+bx+c的對(duì)稱軸為x=,與x軸的一個(gè)交點(diǎn)A(,0),拋物線的頂點(diǎn)B縱坐標(biāo)1<yB<2,則以下結(jié)論:①abc<0;②b2-4ac>0;③3a-b=0;④4a+c<0;⑤<a<.其中正確結(jié)論的個(gè)數(shù)是( )
A. 2 B. 3 C. 4 D. 5
【答案】B
【解析】
由拋物線開口方向,對(duì)稱軸的位置以及與軸的交點(diǎn)位置,確定的正負(fù),由拋物線與x軸有兩個(gè)交點(diǎn)得到b2-4ac>0;拋物線y=ax2+bx+c的對(duì)稱軸為x=,即可判斷③;拋物線與x軸的一個(gè)交點(diǎn)A(,0),得到 把把b=3a代入即可判斷④,根據(jù)拋物線的頂點(diǎn)B縱坐標(biāo)1<yB<2,即可判斷⑤.
①∵拋物線開口向下,
∴a<0,
∵對(duì)稱軸是: ,
∴a、b異號(hào),
∴b>0,
∵拋物線與y軸交于正半軸,
∴c>0,
∴abc<0,
∴選項(xiàng)①正確;
②∵拋物線與x軸有兩個(gè)交點(diǎn),
∴b2-4ac>0
選項(xiàng)②正確;
③拋物線對(duì)稱軸是:
b=3a,
3a+b=0,
∴選項(xiàng)③不正確;
④拋物線與x軸的一個(gè)交點(diǎn)A(,0),
把b=3a代入得:
故選項(xiàng)④正確;
⑤由對(duì)稱性得:拋物線與x軸的另一個(gè)交點(diǎn)為
拋物線的方程為:
拋物線的頂點(diǎn)B縱坐標(biāo)1<yB<2,
解得:
∴選項(xiàng)⑤不正確;
正確的有3個(gè),
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn).
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖2,當(dāng)α=30°時(shí),試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長交BC的延長線于點(diǎn)G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形的A1B1P1P2頂點(diǎn)P1、P2在反比例函數(shù)y= (x>0)的圖象上,頂點(diǎn)A1、B1分別在x軸、y軸的正半軸上,再在其右側(cè)作正方形P2P3A2B2,頂點(diǎn)P3在反比例函數(shù)y= (x>0)的圖象上,頂點(diǎn)A2在x軸的正半軸上,則點(diǎn)P3的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格紙中每個(gè)小正方形的邊長都是單位1,△OAB在平面直角坐標(biāo)系中的位置如圖所示.解答問題:
(1)請(qǐng)按要求對(duì)△ABO作如下變換:
①將△OAB向下平移2個(gè)單位,再向左平移3個(gè)單位得到△O1A1B1;
②以點(diǎn)O為位似中心,位似比為2:1,將△ABC在位似中心的異側(cè)進(jìn)行放大得到△OA2B2.
(2)寫出點(diǎn)A1,A2的坐標(biāo): , ;
(3)△OA2B2的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并解決問題:任意一個(gè)大于1的正整數(shù)m都可以表示為:m=p2+q(p、q是正整數(shù)),在m的所有這種表示中,如果最小時(shí),規(guī)定:F(m)=.例如:21可以表示為:21=12+20=22+17=32+12=42+5,因?yàn)?/span>>>>,所以F(21)=.
(1)求F(33)的值;
(2)如果一個(gè)正整數(shù)n可以表示為t2-t(其中t≥2,且是正整數(shù)),那么稱n是次完全平方數(shù),證明:任何一個(gè)次完全平方數(shù)n,都有F(n)=1;
(3)一個(gè)三位自然數(shù)k,k=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a≤c,a、b、c為整數(shù)),滿足十位上的數(shù)字恰好等于百位上的數(shù)字與個(gè)位上的數(shù)字之和,且k與其十位上數(shù)字的2倍之和能被9整除,求所有滿足條件的k中F(k)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,DE∥BC,點(diǎn)F在邊AC上,DF與BE相交于點(diǎn)G,且∠EDF=∠ABE.
求證:(1)△DEF∽△BDE;(2)DGDF=DBEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)點(diǎn)P為拋物線上一點(diǎn),若S△PAB=10,求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小凱和同學(xué)帶著皮尺,去測量楊大爺家露臺(tái)遮陽篷的寬度.如圖,由于無法直接測量,小凱便在樓前地面上選擇了一條直線EF,通過在直線EF上選點(diǎn)觀測,發(fā)現(xiàn)當(dāng)他位于N點(diǎn)時(shí),他的視線從M點(diǎn)通過露臺(tái)D點(diǎn)正好落在遮陽篷A點(diǎn)處;當(dāng)他位于N′點(diǎn)時(shí),視線從M′點(diǎn)通過D點(diǎn)正好落在遮陽篷B點(diǎn)處,這樣觀測到的兩個(gè)點(diǎn)A、B間的距離即為遮陽篷的寬.已知AB∥CD∥EF,點(diǎn)C在AG上,AG、DE、MN、M′N′均垂直于EF,MN=M′N′,露臺(tái)的寬CD=GE.實(shí)際測得,GE=5米,EN=15.5米,NN′=6.2米.請(qǐng)根據(jù)以上信息,求出遮陽篷的寬AB是多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com