A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{5}$ | D. | 4 |
分析 根據(jù)弦CD⊥AB于E,OA=2,∠B=60°可知CE=DE=$\frac{1}{2}$CD,設(shè)BE=x,則CE=DE=BE•tan60°=$\sqrt{3}$x,OE=2-$\sqrt{3}$x,在Rt△ODE中,根據(jù)勾股定理求出x的值,進(jìn)而可得出結(jié)論.
解答 解:∵AB是⊙O的直徑,弦CD⊥AB于E,OA=2,∠B=60°,
∴CE=DE=$\frac{1}{2}$CD,設(shè)BE=x,則CE=DE=BE•tan60°=$\sqrt{3}$x,OE=2-$\sqrt{3}$x,
在Rt△ODE中,OE=2-x,DE=$\sqrt{3}$x,OD=2,
∵OE2+DE2=OD2,即(2-x)2+($\sqrt{3}$x)2=22,解得x=1,
∴DE=$\sqrt{3}$,
∴CD=2DE=2$\sqrt{3}$.
故選B.
點(diǎn)評(píng) 本題考查的是垂徑定理及勾股定理,根據(jù)題意得出OE與DE之間的關(guān)系,利用勾股定理求解是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | +(+3)和+(-3) | B. | +(-5)和-5 | C. | -(+4)和-(-4) | D. | +(-1)和|-1| |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com