【題目】已知四邊形ABCD為菱形,其邊長為6,,點P在菱形的邊AD、CD及對角線AC上運動,當(dāng)時,則DP的長為________.
【答案】2或或
【解析】
分以下三種情況求解:(1)點P在CD上,如圖①,根據(jù)菱形的邊長以及CP1=2DP1可得出結(jié)果;(2)點P在對角線AC上,如圖②,在三角形CDP2中,可得出∠P2DC=90°,進而可得出DP2的長;(3)當(dāng)點P在邊AD上,如圖③,過點D作于點F,過點作于點E,設(shè),則,再用含x的代數(shù)式表示出CE,EP3,CP3的長,根據(jù)勾股定理列方程求解即可.
解:(1)當(dāng)點P在CD上時,如解圖①,
,,;
(2)當(dāng)點P在對角線AC上時,如解圖②,
,.
當(dāng)時,,;
圖① 圖②
(3)當(dāng)點P在邊AD上時,如解圖③,過點D作于點F,過點作于點E,設(shè),則,
,,,,
,,
.
,在中,由勾股定理得,解得,(舍).
綜上所述,DP的長為2或或.
故答案為:2或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)六七年級有350名同學(xué)去春游,已知2輛A型車和1輛B型車可以載學(xué)生100人;1輛A型車和2輛B型車可以載學(xué)生110人.
(1)A、B型車每輛可分別載學(xué)生多少人?
(2)若租一輛A需要100元,一輛B需120元,請你設(shè)計租車方案,使得恰好運送完學(xué)生并且租車費用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆時針旋轉(zhuǎn)一定角度后與△ADE重合,且點C恰好成為AD的中點.
(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)的度數(shù);
(2)求出∠BAE的度數(shù)和AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了改善辦學(xué)條件,計劃購置一電子白板和一批筆記本電腦,經(jīng)投標(biāo),購買一塊電子白板比買三臺筆記本電腦多3000元,購買4塊電子白板和5臺筆記本電腦共需80000元.
(1)求購買一塊電子白板和一臺筆記本電腦各需多少元?
(2)根據(jù)該校實際情況需購買電子白板和筆記本電腦的總數(shù)為396臺,要求購買的總費用不超過2700000元,并購買筆記本電腦的臺數(shù)不超過購買電子白板數(shù)量的3倍,該校有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點A(o,m),點B(n,0),m, n滿足.
(1)求A,B的坐標(biāo).
(2)如圖1, E為第二象限內(nèi)直線AB上的一點,且滿足,求點E的橫坐標(biāo).
(3)如圖2,平移線段BA至OC, B與O是對應(yīng)點,A與C是對應(yīng)點,連接AC, E為BA的延長線上一點,連接EO, OF平分∠COE, AF平分∠EAC, OF交AF于點F,若∠ABO+∠OEB=α,請在圖2中將圖形補充完整,并求∠F (用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點叫做整點,設(shè)坐標(biāo)軸的單位長度為1cm, 整點P從原點0出發(fā),速度為1cm/s, 且整點P做向上或向右運動(如圖1所示.運動時間(s)與整點(個)的關(guān)系如下表:
整點P從原點出發(fā)的時間(s) | 可以得到整點P的坐標(biāo) | 可以得到整點P的個數(shù) |
1 | (0,1)(1,0) | 2 |
2 | (0,2)(1,1)(2,0) | 3 |
3 | (0,3)(1,2)(2,1)(3,0) | 4 |
. | · | . |
根據(jù)上表中的規(guī)律,回答下列問題:
(1)當(dāng)整點P從點0出發(fā)4s時,可以得到的整點的個數(shù)為______個.
(2)當(dāng)整點P從點O出發(fā)8s時,在直角坐標(biāo)系中描出可以得到的所有整點,并順次連結(jié)這些整點.
(3)當(dāng)整點P從點0出發(fā)______s時,可以得到整點(16,4)的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,AD∥BC,要判別四邊形ABCD是平行四邊形,還需滿足條件( )
A. ∠A+∠C=180°B. ∠B+∠D=180°
C. ∠A+∠B=180°D. ∠A+∠D=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為AB、BC上的點,且AE=BF,連結(jié)DE、AF,猜想DE、AF的關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年4月29日在瑞安外灘舉行了“微馬”活動,本次活動分“微馬組,體驗跑組,歡樂家庭跑組”三種賽程,其中“歡樂家庭跑組”蔡塞家庭只能以“二大一小”或“一大一小”的形式參加,參賽人數(shù)共100人.
(1)若參加“歡樂家庭跑組”的大人人數(shù)是小孩人數(shù)的1.5倍,問:“二大一小”和“一大一小”的組數(shù)分別有幾組?
(2)若“二大一小”和“一大一小”的組數(shù)不相同且相差不超過5組,則本次比賽中參加 “歡樂家庭跑組”共有 組(直接寫出答案).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com