【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn),設(shè)坐標(biāo)軸的單位長(zhǎng)度為1cm, 整點(diǎn)P從原點(diǎn)0出發(fā),速度為1cm/s, 且整點(diǎn)P做向上或向右運(yùn)動(dòng)(如圖1所示.運(yùn)動(dòng)時(shí)間(s)與整點(diǎn)(個(gè))的關(guān)系如下表:

整點(diǎn)P從原點(diǎn)出發(fā)的時(shí)間(s)

可以得到整點(diǎn)P的坐標(biāo)

可以得到整點(diǎn)P的個(gè)數(shù)

1

(0,1)(1,0

2

2

(02)(1,1)(2,0)

3

3

(0,3)(1,2)(2,1)(3,0)

4

.

·

.

根據(jù)上表中的規(guī)律,回答下列問題:

1)當(dāng)整點(diǎn)P從點(diǎn)0出發(fā)4s時(shí),可以得到的整點(diǎn)的個(gè)數(shù)為______個(gè).

2)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8s時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連結(jié)這些整點(diǎn).

3)當(dāng)整點(diǎn)P從點(diǎn)0出發(fā)______s時(shí),可以得到整點(diǎn)(16,4)的位置.

【答案】15;(2)整點(diǎn)為(0,8), (1,7), (2,6), (3,5), (4,4), (5,3), (6,2),(7,1),(8,0)圖略;(320.

【解析】

1)根據(jù)表中所示的規(guī)律,點(diǎn)的個(gè)數(shù)比時(shí)間數(shù)多1,可計(jì)算出整點(diǎn)PO點(diǎn)出發(fā)4秒時(shí)整點(diǎn)P的個(gè)數(shù);

2)由表中所示規(guī)律可知,橫縱坐標(biāo)的和等于時(shí)間,據(jù)此可得到整點(diǎn)P從點(diǎn)O出發(fā)8秒時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連接這些整點(diǎn);

3)由表中規(guī)律可知,橫縱坐標(biāo)的和等于時(shí)間,可得,16+4=20.

1)根據(jù)表中所示的規(guī)律,點(diǎn)的個(gè)數(shù)比時(shí)間數(shù)多1,可計(jì)算出整點(diǎn)PO點(diǎn)出發(fā)4秒時(shí)整點(diǎn)P的個(gè)數(shù)為5;

2)由表中所示規(guī)律可知,橫縱坐標(biāo)的和等于時(shí)間,則點(diǎn)的個(gè)數(shù)為(0,8),(17),(26),(35),(4,4),(5,3),(62),(7,1),(8,0).如圖:

3)由表中規(guī)律可知,橫縱坐標(biāo)的和等于時(shí)間,可得,16+4=20.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為傳播“綠色出行,低碳生活”的理念,小賈同學(xué)的爸爸從家里出發(fā),騎自行車去圖書館看書,圖1表達(dá)的是小賈的爸爸行駛的路程(米)與行駛時(shí)間(分鐘)的變化關(guān)系

1)求線段BC所表達(dá)的函數(shù)關(guān)系式;

2)如果小賈與爸爸同時(shí)從家里出發(fā),小賈始終以速度120/分鐘行駛,當(dāng)小賈與爸爸相距100米是,求小賈的行駛時(shí)間;

3)如果小賈的行駛速度是/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請(qǐng)直接寫出的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在矩形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,過點(diǎn)CBD的平行線,過點(diǎn)DAC的平行線,兩線交于點(diǎn)P

求證:四邊形CODP是菱形.

AD6AC10,求四邊形CODP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A= ÷(a﹣ ).
(1)化簡(jiǎn)A;
(2)當(dāng)a=3時(shí),記此時(shí)A的值為f(3);當(dāng)a=4時(shí),記此時(shí)A的值為f(4);… 解關(guān)于x的不等式: ≤f(3)+f(4)+…+f(11),并將解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD為菱形,其邊長(zhǎng)為6,,點(diǎn)P在菱形的邊AD、CD及對(duì)角線AC上運(yùn)動(dòng),當(dāng)時(shí),則DP的長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.

1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,那么四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由.

2)性質(zhì)探究:

①如圖1,垂美四邊形ABCD兩組對(duì)邊AB、CDBC、AD之間有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給出證明.

②如圖3,在RtABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點(diǎn)MN.試猜想四邊形FMAN的形狀,并說明理由;

3)問題解決:

如圖4,分別以RtACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE、BG,GE,已知AC=2,AB=5.求GE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的方程組 (a≥0),給出下列說法:
①當(dāng)a=1時(shí),方程組的解也是方程x+y=2的一個(gè)解;
②當(dāng)x﹣2y>8時(shí),a> ;
③不論a取什么實(shí)數(shù),2x+y的值始終不變;
④某直角三角形的兩條直角邊長(zhǎng)分別為x+y,x﹣y,則其面積最大值為
以上說法正確的是( )
A.②③
B.①②④
C.③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),沿著箭頭方向,每次移動(dòng)1個(gè)單位長(zhǎng)度,依次得到點(diǎn)A1(01),A2(1,1)A3(1,0),A4(20),A5(2,1),…,則點(diǎn)A2018的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),沿著箭頭所示方向,每次移動(dòng)1個(gè)單位,依次得到點(diǎn)P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,則點(diǎn)P2018的坐標(biāo)是________

查看答案和解析>>

同步練習(xí)冊(cè)答案