【題目】拋物線C1:y=a(x+1)(x﹣3a)(a>0)與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3)
(1)求拋物線C1的解析式及A,B點(diǎn)坐標(biāo);
(2)求拋物線C1的頂點(diǎn)坐標(biāo);
(3)將拋物線C1向上平移3個(gè)單位長(zhǎng)度,再向左平移n(n>0)個(gè)單位長(zhǎng)度,得到拋物線C2 , 若拋物線C2的頂點(diǎn)在△ABC內(nèi),求n的取值范圍. (在所給坐標(biāo)系中畫(huà)出草圖C1)
【答案】
(1)解:∵拋物線C1:y=a(x+1)(x﹣3a)y軸交于點(diǎn)C(0,﹣3),
∴﹣3=a(0+1)(0﹣3a),
解得a=1(舍去負(fù)值).
∴拋物線C1的解析式為:y=(x+1)(x﹣3).
∴A(﹣1,0),B(3,0)
(2)解:∵y=(x+1)(x﹣3)=(x﹣1)2﹣4,
∴該拋物線的解析式為y=(x﹣1)2﹣4,則該拋物線的頂點(diǎn)坐標(biāo)為(1,﹣4)
(3)解:將(1)中求得的拋物線向上平移3個(gè)單位長(zhǎng)度,
再向左平移n(n>0)個(gè)單位長(zhǎng)度得到新拋物線y=(x﹣1+n)2﹣1,
∴平移后拋物線的頂點(diǎn)坐標(biāo)是(1﹣n,﹣1),
∴﹣ <1﹣n<2,
解得﹣1<n< ,
∵n>0,
∴0<n< .
【解析】(1)根據(jù)已知點(diǎn)的坐標(biāo)代入已知的函數(shù)的解析式即可利用待定系數(shù)法確定二次函數(shù)的解析式;(2)由(1)中的函數(shù)解析式即可求出拋物線C1的頂點(diǎn)坐標(biāo);(3)首先根據(jù)平移確定平移后的函數(shù)的解析式,然后確定拋物線C2的頂點(diǎn)坐標(biāo);結(jié)合圖形確定n的取值范圍即可.
【考點(diǎn)精析】利用二次函數(shù)圖象的平移和拋物線與坐標(biāo)軸的交點(diǎn)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對(duì)x軸左加右減;對(duì)y軸上加下減;一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步驟作圖:①分別以點(diǎn)A,B為圓心,大于線段AB長(zhǎng)度的一半為半徑畫(huà)弧,兩弧分別相交于點(diǎn)M,N;②作直線MN分別交AB,AC于點(diǎn)D,E,連結(jié)BE,則BE的長(zhǎng)是( )
A.
B.3
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)根據(jù)圖示的對(duì)話解答下列問(wèn)題.
求:(1)a,b的值;
(2)8﹣a+b﹣c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在正方形ABCD中,E為CD邊上的一點(diǎn),F(xiàn)為BC的延長(zhǎng)線上一點(diǎn),CE=CF。
⑴△BCE與△DCF全等嗎?說(shuō)明理由;
⑵若∠BEC=60o,求∠EFD。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖示,三角形ABC是等邊三角形,D是BC邊上的一點(diǎn),三角形ABD經(jīng)過(guò)旋轉(zhuǎn)后到達(dá)三角形ACE的位置.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)了多少度?
(3)如果M是AB的中點(diǎn),那么經(jīng)過(guò)上述旋轉(zhuǎn)后,點(diǎn)M到了什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=6,CD=8,E,F分別是邊ABCD的中點(diǎn), DH⊥BC于點(diǎn)H,連接EH,EC,EF,現(xiàn)有下列結(jié)論:①∠CDH=30°;②EF=4;③四邊形EFCH是菱形;④S△EFC=3S△BEH.你認(rèn)為結(jié)論正確的有___________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上有點(diǎn)a,b,c三點(diǎn)
(1)用“<”將a,b,c連接起來(lái).
(2)b﹣a 1(填“<”“>”,“=”)
(3)化簡(jiǎn)|c﹣b|﹣|c﹣a+1|+|a﹣1|
(4)用含a,b的式子表示下列的最小值:
①|(zhì)x﹣a|+|x﹣b|的最小值為 ;
②|x﹣a|+|x﹣b|+|x+1|的最小值為 ;
③|x﹣a|+|x﹣b|+|x﹣c|的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC,
(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度數(shù);
(2)如果∠AOB=α,∠BOC=β(α、β均為銳角,α>β),其他條件不變,求∠DOE;
(3)從(1)、(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律,請(qǐng)寫(xiě)出來(lái).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com