分析 分兩種情形:①當(dāng)AB∥CD時,CD=AB=10,②當(dāng)CD為對角線時,AB的中點(diǎn)E(4,3),設(shè)C(x,-x),求出CE,構(gòu)建二次函數(shù)利用二次函數(shù)的性質(zhì)解決最值問題.
解答 解:①當(dāng)AB∥CD時,CD=AB=10,
②當(dāng)CD為對角線時,AB的中點(diǎn)E(4,3),設(shè)C(x,-x),
CE=$\sqrt{(x-4)^{2}+(-x-3)^{2}}$=$\sqrt{2{x}^{2}-2x+25}$=$\sqrt{2(x-\frac{1}{2})^{2}+\frac{49}{2}}$,
當(dāng)x=$\frac{1}{2}$時,CE最小=$\frac{7\sqrt{2}}{2}$,
此時CD最小=7$\sqrt{2}$.
∵7$\sqrt{2}$<10,
∴CD的最小值為7$\sqrt{2}$.
故答案為7$\sqrt{2}$.
點(diǎn)評 本題考查平行四邊形的性質(zhì)、一次函數(shù)、兩點(diǎn)之間的距離公式等知識,解題的關(guān)鍵是學(xué)會分類討論,構(gòu)建二次函數(shù)利用二次函數(shù)的性質(zhì)解決最值問題,屬于中考常考題型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 20 | C. | 24 | D. | 28 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | 4π | C. | 6π | D. | 12π |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{3}{x}$ | B. | y=-$\frac{3}{x}$ | C. | y=$\frac{3}{2x}$ | D. | y=-$\frac{3}{2x}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com