如圖,平行四邊形ABCD中,AB=4,BC=3,∠BAD=120°,E為BC上一動(dòng)點(diǎn)(不與B重合),作EF⊥AB于F,F(xiàn)E,DC的延長(zhǎng)線交于點(diǎn)G,設(shè)BE=x,△DEF的面積為S.
(1)求證:△BEF∽△CEG;
(2)求用x表示S的函數(shù)表達(dá)式,并寫出x的取值范圍;
(3)當(dāng)E運(yùn)動(dòng)到何處時(shí),S有最大值,最大值為多少?

【答案】分析:(1)因?yàn)椤螧=∠GCE,∠BEF=∠GEC,所以△BEF∽△CEG;
(2)在平行四邊形ABCD中,因?yàn)椤螧AD=120°所以∠B=60°=∠ECG,又BE=x,EC=3-x,所以EF、CG可利用三角函數(shù)求出,即在△EFG中,邊和邊上的高就為已知,從而求出解析式;
(3)在(2)的基礎(chǔ)上,尋求函數(shù)的最大值.
解答:(1)證明:∵AB∥GD,
∴∠B=∠GCE,
又∵∠BEF=∠GEC,
∴△BEF∽△CEG.

(2)解:由(1)DG為△DEF中EF邊上的高,
在Rt△BFE中,∠B=60°,EF=BEsinB=x,(4分)
在Rt△CEG中,CE=3-x,CG=(3-x)cos60°=,
∴DG=DC+CG=,(5分)
∴S=EF•DG=-x2+x,(6分)
其中0<x≤3.(7分)

(3)解:∵a=-,對(duì)稱軸x=
∴當(dāng)0<x≤3時(shí),S隨x的增大而增大,
∴當(dāng)x=3,即E與C重合時(shí),S有最大值.(9分)
S最大=3.(10分)
點(diǎn)評(píng):此題考查內(nèi)容較為豐富,既有平行四邊形又有三角函數(shù),難易程度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點(diǎn),且S△AOE=
16
3
,求經(jīng)過(guò)D、E兩點(diǎn)的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點(diǎn),AB=3,ED=1,則平行四邊形ABCD的周長(zhǎng)是
14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC、BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,分別交BC、AD于點(diǎn)E、F.
精英家教網(wǎng)
(1)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,線段AF與EC總保持相等;
(2)當(dāng)旋轉(zhuǎn)角為90°時(shí),在圖2中畫出直線AC旋轉(zhuǎn)后的位置并證明此時(shí)四邊形ABEF是平行四邊形;
(3)在直線AC旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).(圖供畫圖或解釋時(shí)使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD的兩條對(duì)角線AC、BD相交于點(diǎn)O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長(zhǎng)為
20
20

查看答案和解析>>

同步練習(xí)冊(cè)答案