解方程:
2x
3
+1=
x
3
+
1
2
考點(diǎn):解一元一次方程
專題:計(jì)算題
分析:方程去分母,去括號(hào),移項(xiàng)合并,將x系數(shù)化為1,即可求出解.
解答:解:去分母得:4x+6=2x+3,
移項(xiàng)合并得:2x=-3,
解得:x=-1.5.
點(diǎn)評(píng):此題考查了解一元一次方程,其步驟為:去分母,去括號(hào),移項(xiàng)合并,將未知數(shù)系數(shù)化為1,求出解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(2,0)、C(0,2)三點(diǎn).
(1)求這條拋物線的解析式;
(2)如圖一,點(diǎn)P是第一象限內(nèi)此拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖二,設(shè)線段AC的垂直平分線交x軸于點(diǎn)E,垂足為D,M為拋物線的頂點(diǎn),那么在直線DE上是否存在一點(diǎn)G,使△CMG的周長(zhǎng)最。咳舸嬖,請(qǐng)求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙A中,試列舉出一條直徑、兩條半徑、三條弦、三段弧、三個(gè)圓周角、三個(gè)圓心角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AB=AC,D是∠BAC的平分線上一點(diǎn),則△DBC是什么三角形?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,E為正方形ABCD外一點(diǎn),連接AE,BE,若AE=AB,∠ABE=75°,連接DE交AB于點(diǎn)F,判斷△AEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校為了了解本校九年級(jí)學(xué)生的視力情況(視力情況分為:不近視,輕度近視,中度近視,重度近視),隨機(jī)對(duì)九年級(jí)的部分學(xué)生進(jìn)行了抽樣調(diào)查,將調(diào)查結(jié)果進(jìn)行整理后,繪制了如下不完整的統(tǒng)計(jì)圖,其中不近視與重度近視人數(shù)的和是中度近視人數(shù)的2倍.

請(qǐng)你根據(jù)以上信息解答下列問題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,在扇形統(tǒng)計(jì)圖中,“不近視”對(duì)應(yīng)扇形的圓心角度數(shù)是
 
度;
(3)若該校九年級(jí)學(xué)生有1050人,請(qǐng)你估計(jì)該校九年級(jí)近視(包括輕度近視,中度近視,重度近視)的學(xué)生大約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,經(jīng)過點(diǎn)A(0,-6)的拋物線y=
1
2
x2+bx+c與x軸相交于B(-2,0),C兩點(diǎn).
(1)求此拋物線的函數(shù)關(guān)系式和頂點(diǎn)D的坐標(biāo);
(2)將(1)中求得的拋物線向左平移1個(gè)單位長(zhǎng)度,再向上平移m(m>0)個(gè)單位長(zhǎng)度得到新拋物線y1,若新拋物線y1的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(3)在(2)的結(jié)論下,新拋物線y1上是否存在點(diǎn)Q,使得△QAB是以AB為底邊的等腰三角形?請(qǐng)分析所有可能出現(xiàn)的情況,并直接寫出相對(duì)應(yīng)的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-
1
4
x2+bx+4
與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,已知A點(diǎn)的坐標(biāo)為A(-2,0).
(1)求拋物線的解析式及它的對(duì)稱軸;
(2)平移拋物線的對(duì)稱軸所在直線l,它在第一象限與拋物線相交于點(diǎn)M,與直線BC相交于點(diǎn)N,當(dāng)l移動(dòng)到何處時(shí),線段MN的長(zhǎng)度最大?最大值是多少?
(3)在x軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,直接寫出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若a+b=5,ab=3,則(a-2)(b-2)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案