【題目】拋物線C:y=x[a(x﹣1)+x+1](a為任意實數(shù)).
(1)無論a取何值,拋物線C恒過定點 , .
(2)當(dāng)a=1時,設(shè)拋物線C在第一象限依次經(jīng)過的整數(shù)點(橫、縱坐標(biāo)均為整數(shù)的點)為A1,A2,……An,將拋物線C沿著直線y=x(x≥0)平移,將平移后的拋物線記為C n,拋物線C n經(jīng)過點An,C n的頂點坐標(biāo)為Mn(n為正整數(shù)且n=1,2,…,n,例如n=1時,拋物線C1經(jīng)過點A1,C1的頂點坐標(biāo)為M1).
①拋物線C2的解析式為 ,頂點坐標(biāo)為 .
②拋物線C1上是否存在點P,使得PM1∥A2M2?若存在,求出點P的坐標(biāo),并判斷四邊形PM1M2A2的形狀;若不存在,請說明理由.
③直接寫出Mn﹣1,Mn兩頂點間的距離: .
【答案】(1)(0,0),(1,1);(2)①y=(x﹣3)2+3,(3,3).②存在,P(0,2),③2.
【解析】
(1)分別取x=0,x=1求出對應(yīng)的函數(shù)值即可解決問題;
(2)①由題意a=1,可得拋物線的解析式為y=x2,設(shè)平移后的頂點為(m,m),則平移后的拋物線為y=(x﹣m)2+m,利用待定系數(shù)法求出m即可;
②求出A1,M1,A2,M2的坐標(biāo),利用圖象法解決問題即可;
③分別求出Mn,Mn﹣1的坐標(biāo),利用兩點間距離公式求解即可.
解:(1)對于y=x[a(x﹣1)+x+1],
當(dāng)x=0時,y=0,
當(dāng)x=1時,y=1,
∴拋物線C經(jīng)過定點(0,0)和(1,1),
故答案為:(0,0),(1,1);
(2)①由題意a=1,可得拋物線的解析式為y=x2,
設(shè)平移后的頂點為(m,m),
則平移后的拋物線為y=(x﹣m)2+m,
∵拋物線C2經(jīng)過A2(2,4),
∴4=(2﹣m)2+m,
解得m=3或0(舍棄),
∴拋物線C2的解析式為y=(x﹣3)2+3,頂點M2(3,3).
故答案為:y=(x﹣3)2+3,(3,3);
②存在.由題意A1(1,1),M1(1,1).A2(2,4),M2(3,3),
觀察圖象可知當(dāng)P(0,2)時,PA1∥A2M2,此時四邊形PM1M2A2是矩形;
③由題意An(n,n2),An﹣1[n﹣1,(n﹣1)2],
設(shè)拋物線Cn的解析式為y=(x﹣m)2+m,
∵Cn經(jīng)過An,
∴n2=(n﹣m)2+m,
解得m=2n﹣1或0(舍棄),
∴Mn(2n﹣1,2n﹣1),
同法可得Mn﹣1(2n﹣3,2n﹣3),
∴MnMn﹣1==2,
故答案為:2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E是BC上的一點,連接AE,過B點作BH⊥AE,垂足為點H,延長BH交CD于點F,連接AF.
(1)求證AE=BF;
(2)若正方形的邊長是5,BE=2,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2﹣x+c交x軸于A,B兩點,交y軸于點C.直線y=﹣x+3經(jīng)過點B,C.
(1)求拋物線的解析式;
(2)若點P為直線BC下方的拋物線上一動點(不與點B,C重合),則△PBC的面積能夠等于△BOC的面積嗎?若能,求出相應(yīng)的點P的坐標(biāo);若不能,請說明理由;
(3)如圖2,現(xiàn)把△BOC平移至如圖所示的位置,此時三角形水平方向一邊的兩個端點點O′與點B′都在拋物線上,稱點O′和點B′為△BOC在拋物線上的一“卡點對”;如果把△BOC旋轉(zhuǎn)一定角度,使得其余邊位于水平方向然后平移,能夠得到這個三角形在拋物線上新的“卡點對”.請直接寫出△BOC在已知拋物線上所有“卡點對”的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點和.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點是線段上一點,過點作軸于點,交反比例函數(shù)圖象于點,連接、,若的面積為,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的高速發(fā)展,人們的支付方式發(fā)生了巨大改變,某學(xué)習(xí)小組抽樣調(diào)查了春節(jié)期間某商場顧客的支付方式,主要有現(xiàn)金支付、銀聯(lián)卡支付和手機支付,調(diào)查得知使用這三種支付的人數(shù)比為,手機支付已成為市民購物便捷支付方式.手機支付主要有以下三種方式:~支付寶,~微信,~其他.現(xiàn)將使用手機支付方式人數(shù)的調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
(1)扇形統(tǒng)計圖中,________;請補全條形統(tǒng)計圖;
(2)若該商場春節(jié)期間共20000人購物,請估計用支付寶進(jìn)行支付的人數(shù).
(3)經(jīng)調(diào)查某天顧客現(xiàn)金支付、銀聯(lián)卡支付、手機支付每筆交易發(fā)生的平均金額分別為120元、260元、80元,求這天顧客每筆交易的平均金額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)圖象的頂點為A,與y軸交于點B,異于頂點A的點C(1,n)在該函數(shù)圖象上.
(1)當(dāng)m=5時,求n的值.
(2)當(dāng)n=2時,若點A在第一象限內(nèi),結(jié)合圖象,求當(dāng)y時,自變量x的取值范圍.
(3)作直線AC與y軸相交于點D.當(dāng)點B在x軸上方,且在線段OD上時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABOC的兩直角邊分別在坐標(biāo)軸的正半軸上,分別過OB,OC的中點D,E作AE,AD的平行線,相交于點F, 已知OB=8.
(1)求證:四邊形AEFD為菱形.
(2)求四邊形AEFD的面積.
(3)若點P在x軸正半軸上(異于點D),點Q在y軸上,平面內(nèi)是否存在點G,使得以點A,P, Q,G為頂點的四邊形與四邊形AEFD相似?若存在,求點P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F分別是ABCD的邊BC,AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=8,∠BAC=90°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店第一個月以每件100元的價格購進(jìn)200件襯衫,以每件150元的價格售罄.由于市場火爆,該商店第二個月再次購進(jìn)一批襯衫,與第一批襯衫相比,這批襯衫的進(jìn)價和數(shù)量都有一定的提高,其數(shù)量的增長率是進(jìn)價增長率的2.5倍,該批襯衫仍以每件150元銷售.第二個月結(jié)束后,商店對剩余的50件襯衫以每件120元的價格一次性清倉銷售,商店出售這兩批襯衫共盈利17500元.設(shè)第二批襯衫進(jìn)價的增長率為x.
(1)第二批襯衫進(jìn)價為 元,購進(jìn)的數(shù)量為 件.(都用含x的代數(shù)式表示,不需化簡)
(2)求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com