【題目】不透明的口袋里裝有紅、黃、藍三種顏色的小球若干個(除顏色外其余都相同),其中紅球2個(分別標有1號、2號),藍球1個.若從中任意摸出一個球,它是藍球的概率為

1)求袋中黃球的個數(shù);

2)第一次任意摸出一個球(不放回),第二次再摸出一個球,請用畫樹狀圖或列表格的方法,求兩次摸到不同顏色球的概率.

【答案】1)袋中黃球的個數(shù)為1個;(2)兩次摸到不同顏色球的概率為:P=

【解析】 試題分析:(1)首先設袋中黃球的個數(shù)為x個,由從中任意摸出一個球,它是藍球的概率為,利用概率公式即可得方程: 解此方程即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸到不同顏色球的情況,再利用概率公式求解即可求得答案.

試題解析:(1)設袋中黃球的個數(shù)為x個,

∵從中任意摸出一個球,它是藍球的概率為

,

解得:x=1,

∴袋中黃球的個數(shù)為1個;

(2)畫樹狀圖得:

∵共有12種等可能的結果,兩次摸到不同顏色球的有10種情況,

∴兩次摸到不同顏色球的概率為:P=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】建華小區(qū)準備新建50個停車位,以解決小區(qū)停車難的問題.已知新建1個地上停車位和1個地下停車位需0.5萬元;新建3個地上停車位和2個地下停車位需1.1萬元.

1)該小區(qū)新建1個地上停車位和1個地下停車位各需多少萬元?

2)若該小區(qū)預計投資金額超過10萬元而不超過11萬元,則共有幾種建造方案?

3)已知每個地上停車位月租金100元,每個地下停車位月租金300. 在(2)的條件下,新建停車位全部租出.若該小區(qū)將第一個月租金收入中的3600元用于舊車位的維修,其余收入繼續(xù)興建新車位,恰好用完,請直接寫出該小區(qū)選擇的是哪種建造方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標軸上,連接AC,拋物線y=x2-4x-2經(jīng)過A,B兩點.

(1)求A點坐標及線段AB的長;

(2)若點P由點A出發(fā)以每秒1個單位的速度沿AB邊向點B移動,1秒后點Q也由點A出發(fā)以每秒7個單位的速度沿A-O-C-B的方向向點B移動,當其中一個點到達終點時另一個點也停止移動,點P的移動時間為t秒.

當PQAC時,求t的值;

當PQAC時,對于拋物線對稱軸上一點H,當點H的縱坐標滿足條件_________時,HOQ<POQ.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC,BA=BC,BAC,MAC的中點P是線段BM上的動點,將線段PA繞點P順時針旋轉(zhuǎn)得到線段PQ

1)若α=60°,且點P與點M重合(如圖1),線段CQ的延長線交射線BM于點D,此時∠CDB的度數(shù)為________

2)在圖2,P不與點B、M重合線段CQ的延長線交射線BM于點D,則∠CDB的度數(shù)為(用含α的代數(shù)式表示)________

3)對于適當大小的α,當點P在線段BM上運動到某一位置(不與點B、M重合)時,能使得線段CQ的延長線與射線BM交于點DPQ=DQα的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展了“手機伴我行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成圖①、圖②不完整的統(tǒng)計圖,已知問卷調(diào)查中“查資料”的人數(shù)是40人,條形統(tǒng)計圖中“01表示每周使用手機的時間大于0小時而小于或等于1小時,以此類推.

1)本次問卷調(diào)查一共調(diào)查了多少名學生?

2)補全條形統(tǒng)計圖;

3)該校共有學生1200人,估計每周使用手機“玩游戲”是多少名學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校有1500名學生參加首屆我愛我們的課堂為主題的圖片制作比賽,賽后隨機抽取部分參賽學生的成績進行整理并制作成圖表如下:

頻率分布統(tǒng)計表

頻率分布直方圖

分數(shù)段

頻數(shù)

頻率

60x<70

40

0.40

70x<80

35

b

80x<90

a

0.15

90x<100

10

0.10

請根據(jù)上述信息,解答下列問題:

(1)表中:a= ,b=

(2)請補全頻數(shù)分布直方圖;

(3)如果將比賽成績80分以上(含80分)定為優(yōu)秀,那么優(yōu)秀率是多少?并且估算該校參賽學生獲得優(yōu)秀的人數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形 ABEF 的面積為 4,△BCE 是等邊三角形,點 C 在正方形ABEF 外,在對角線 BF 上有一點 P,使 PC+PE 最小,則這個最小值的平方為(

A.B.C.12D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B兩地有公路和鐵路相連,在這條路上有一家食品廠,它到B地的距離是到A地的2倍,這家廠從A地購買原料,制成食品賣到B地.已知公路運價為1.5/(公里噸),鐵路運價為1/(公里噸),這兩次運輸(第一次:A地→食品廠,第二次:食品廠→B)共支出公路運費15600元,鐵路運費20600元.

問:(1)這家食品廠到A地的距離是多少?

(2)這家食品廠此次買進的原料每噸5000元,賣出的食品每噸10000元,此批食品銷售完后工廠共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(8)如圖,在平面直角坐標系xOy中,一次函數(shù)ykxb的圖象與反比例函數(shù)y的圖象交于A(2,3),B(3,n)兩點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)Py軸上一點,且滿足PAB的面積是5,求OP的長.

查看答案和解析>>

同步練習冊答案