【題目】如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA,OB的長是關于x的一元二次方程的兩個根,且OA>OB.

(1)若點Ex軸上的點,且△AOE的面積為.

求:①點E的坐標;②證明:△AOE∽△DAO;

(2)若點M在平面直角坐標系中,則在直線AB上是否存在點F,使以A,C,F,M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.

【答案】(1);詳見解析;(2)

【解析】

(1)①解一元二次方程求出OA,OB的長度,根據(jù)三角形的面積求出點E的坐標.
②分別求出兩三角形夾直角的兩對應邊的比,如果相等,則兩三角形相似,否則不相似;
(2)根據(jù)菱形的性質,分ACAF是鄰邊并且點F在射線AB上與射線BA上兩種情況,以及ACAF分別是對角線的情況分別進行求解計算.

(1)

(x3)(x4)=0,

x3=0,x4=0,

解得

OA>OB

OA=4,OB=3,

∵點Ex軸上

E點的坐標為

②在AOEDAO, AD=6,

又∵

AOEDAO;

(2)根據(jù)計算的數(shù)據(jù),OB=OC=3,

AO平分∠BAC

AC、AF是鄰邊,點F在射線AB上時,AF=AC=5,

所以點FB重合,

F(3,0),

AC、AF是鄰邊,點F在射線BA上時,M應在直線AD上,且FC垂直平分AM,

F(3,8).

AC是對角線時,AC垂直平分線L,AC解析式為,直線L k值為 (平面內(nèi)互相垂直的兩條直線k值乘積為1),

L解析式為 聯(lián)立直線L與直線AB求交點,

F;

AF是對角線時,CAB垂線,垂足為N,根據(jù)等積法求出勾股定理得出,AA關于N的對稱點即為F,Fy軸垂線,垂足為G,

F

綜上所述,滿足條件的點有四個:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商家獨家銷售具有地方特色的某種商品每件進價為40元.經(jīng)過市場調查,一周的銷售量y件與銷售單價xx≥50)/件的關系如下表

(1)直接寫出yx的函數(shù)關系式

(2)設一周的銷售利潤為S,請求出Sx的函數(shù)關系式,并確定當銷售單價在什么范圍內(nèi)變化時一周的銷售利潤隨著銷售單價的增大而增大?

(3)雅安地震牽動億萬人民的心商家決定將商品一周的銷售利潤全部寄往災區(qū),在商家購進該商品的貨款不超過10000元情況下,請你求出該商家最大捐款數(shù)額是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:

數(shù)學活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

如圖,在平面直角坐標系中,的半徑為,點是直線上的一點,若在上存在一點,使得智慧三角形,當其面積取得最小值時,直接寫出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是梯形ABCD的內(nèi)切圓,ABDC,E、M、F、N分別是邊AB、BC、CD、DA上的切點.

(1)求證:AB+CD=AD+BC

(2)求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有4個質地、大小均相同的小球,這些小球分別標有3,4,5,x,甲乙兩人每次同時從袋中各隨機摸出1個小球,并計算摸出的這2個小球上數(shù)字之和,記錄后都將小球放回袋中攪勻,進行重復試驗,試驗數(shù)據(jù)如圖:

解答下列問題:

(1)如果試驗繼續(xù)進行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為8”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為8”的概率是 .

(2)如果摸出的這兩個小球上的數(shù)字之和為9的概率是,那么x的值可以取7嗎?請用列表法或畫樹狀圖法說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yx2﹣2mx+m2﹣3(m是常數(shù)).

(1)證明無論m取什么實數(shù),該拋物線與x軸都有兩個交點

(2)設拋物線的頂點為A,x軸兩個交點分別為B,D,BD的右側,y軸的交點為C

求證m取不同值時,△ABD都是等邊三角形;

|m|≤,m≠0,△ABC的面積是否有最大值,如果有請求出最大值,如果沒有,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

材料1、若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則x1+x2=,x1x2=

材料2、已知實數(shù)m、n滿足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.

解:由題知m、n是方程x2﹣x﹣1=0的兩個不相等的實數(shù)根,根據(jù)材料1

m+n=1,mn=﹣1

根據(jù)上述材料解決下面問題;

(1)一元二次方程2x2+3x﹣1=0的兩根為x1、x2,則x1+x2=   ,x1x2=   

(2)已知實數(shù)m、n滿足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.

(3)已知實數(shù)p、q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結論:①a,b同號;②當x=1和x=3時,函數(shù)值相等;③4a+b=0;④當﹣1<x<5時,y<0.其中正確的有( 。

A. ①② B. ②③ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應市委政府“加快建設天藍水碧地綠的美麗長沙”的號召,我市某街道決定從備選的五種樹中選購一種進行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機抽取了部分居民,進行“我最喜歡的一種樹”的調查活動(每人限選其中一種樹),并將調查結果整理后,繪制成如圖兩個不完整的統(tǒng)計圖:

請根據(jù)所給信息解答以下問題:

(1)這次參與調查的居民人數(shù)為:   ;

(2)請將條形統(tǒng)計圖補充完整;

(3)請計算扇形統(tǒng)計圖中“楓樹”所在扇形的圓心角度數(shù);

(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請你估計這8萬人中最喜歡玉蘭樹的有多少人?

查看答案和解析>>

同步練習冊答案