【題目】如圖,在△ABC中,∠ABC90°,∠A30°,DE垂直平分斜邊AC,交ABDE是垂足,連接BECD,若BD1,則△BCE的面積為( 。

A.B.C.D.

【答案】A

【解析】

根據(jù)DE垂直平分斜邊AC,得到ADCDAECE,根據(jù)∠A=30°,通過角度之間的轉化可以得到∠BCD=30°,從而得到BC,ADCD2,求得AB3,于是得到結論.

解:∵在△ABC中,∠ABC90°,∠A30°,

∴∠ACB60°,

DE垂直平分斜邊AC,

ADCD,AECE

∴∠ACD=∠A30°

∴∠BCD30°,

BD1,

BCADCD2,

AB3,

∴△BCE的面積=SABC××3×.

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】從南京站開往上海站的一輛和諧號動車,中途只?刻K州站,甲、乙、丙名互不相識的旅客同時從南京站上車.

求甲、乙、丙三名旅客在同一個站下車的概率;

求甲、乙、丙三名旅客中至少有一人在蘇州站下車的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數(shù)m的取值范圍是(  )

A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設=y,求y關于x的函數(shù)關系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是等腰的斜邊上的一點,,于點于點

求證:的中點;

的值;

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義為函數(shù)的特征數(shù),下面給出特征數(shù)為的函數(shù)的一些結論:

時,函數(shù)圖象的頂點坐標是

時,函數(shù)圖象截軸所得的線段長度大于;

時,函數(shù)在時,的增大而減;

時,函數(shù)圖象經(jīng)過同一個點.

其中正確的結論有(

A. ①②③④ B. ①②④ C. ①③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的高為ADA'B'C'的高為A'D',且A'D'AD.現(xiàn)有①②③三個條件:

①∠B=∠B',∠C=∠C';

②∠B=∠B',ABA'B';

BCB'C',ABA'B'

分別添加以上三個條件中的一個,如果能判定ABC≌△A'B'C',寫出序號,并畫圖證明;如果不能判定ABC≌△A'B'C',寫出序號,并畫出相應的反例圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代科技的發(fā)展已經(jīng)進入到了5G時代,“5G”即第五代移動通信技術(英語:5th generation mobile networks5th generation wireless systems、5th-Generation,簡稱5G5G技術)是最新一代蜂窩移動通信技術,也是即4GLTE-A、WiMax)、3GUMTS、LTE)和2GGSM)系統(tǒng)之后的延伸。中國信息通信科技集團有限公司工程師余少華院士說4G相比,5G的傳輸速率提高了10100倍.”“從人人互聯(lián)、人物互聯(lián),到物物互聯(lián),再到人網(wǎng)物三者的結合,5G技術最終將構建起萬物互聯(lián)的智能世界如果5G網(wǎng)絡峰值速率是4G網(wǎng)絡峰值速率的10倍,那么在峰值速率下傳輸1 000MB數(shù)據(jù),5G網(wǎng)絡比4G網(wǎng)絡快90秒,求這兩種網(wǎng)絡的峰值速率(MB/秒).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于AB兩點(點A在點B的左側),與y軸交于點C,且OB=OC=3,頂點為M

1)求二次函數(shù)的解析式;

2)點P為線段BM上的一個動點,過點Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點N,使NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案