【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,且AC⊥BD,點E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,依次連接各邊中點得到四邊形EFGH,求證:四邊形EFGH是矩形.

【答案】證明:∵點E、F、G、H分別是邊AB、BC、CD、DA的中點, ∴EF= AC,GH= AC,
∴EF=GH,同理EH=FG
∴四邊形EFGH是平行四邊形;
又∵對角線AC、BD互相垂直,
∴EF與FG垂直.
∴四邊形EFGH是矩形
【解析】首先利用三角形的中位線定理證得四邊形EFGH為平行四邊形,然后利用有一個角是直角的平行四邊形是矩形判定即可.
【考點精析】本題主要考查了三角形中位線定理的相關知識點,需要掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了保護視力,學校計劃開展“愛眼護眼”視力保健活動,為使活動更具有實效性,先對學生視力情況進行調(diào)查,隨機抽取40名學生,檢查他們的視力,并繪制不完整的直方圖(數(shù)據(jù)包括左端點不包括右端點,精確到0.1),請結合直方圖的信息解答下列問題:

(1)統(tǒng)計圖中,4.8≤x<5.0的學生數(shù)是人;
(2)將頻數(shù)分布直方圖補充完整;
(3)若繪制“學生視力扇形統(tǒng)計圖”,視力達到4.8及以上為達標,則視為達標學生所對應扇形的圓心角度數(shù)為°;
(4)若全校共有800名學生,則視力達標的學生估計有名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:一次函數(shù)的圖象與反比例函數(shù))的圖象相交于A,B兩點(A在B的右側).

(1)當A(4,2)時,求反比例函數(shù)的解析式及B點的坐標;

(2)在(1)的條件下,反比例函數(shù)圖象的另一支上是否存在一點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.

(3)當A(a,﹣2a+10),B(b,﹣2b+10)時,直線OA與此反比例函數(shù)圖象的另一支交于另一點C,連接BC交y軸于點D.若,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a,b,cABC的三邊,化簡|a-b-c|+|b-c-a|+|c-a-b|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉行“漢字聽寫”比賽,每位學生聽寫漢字39個,比賽結束后,隨機抽查部分學生的聽寫結果,以下是根據(jù)抽查結果繪制的統(tǒng)計圖的一部分.
根據(jù)以上信息解決下列問題:

組別

正確字數(shù)x

人數(shù)

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

20


(1)在統(tǒng)計表中,m= , n= , 并補全直方圖;
(2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù)是度;
(3)若該校共有964名學生,如果聽寫正確的個數(shù)少于24個定為不合格,請你估算這所學校本次比賽聽寫不合格的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】工人師傅在架設電線時,為了檢驗三條電線是否互相平行只檢查了其中兩條是否與第三條平行即可,這樣做的道理是______________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角三角形ABC中(AB>AC),AH⊥BC,垂足為H,E、D、F分別是各邊的中點,則四邊形EDHF是(
A.梯形
B.等腰梯形
C.直角梯形
D.矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校開展植樹活動,如果每人植樹3棵,那么還剩8棵;如果每人植樹5棵,那么最后一人分得一些,但不足3棵,問共有多少人?共有多少棵樹苗?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于點O,點E是CD的中點,△ABD的周長為16cm,則△DOE的周長是cm.

查看答案和解析>>

同步練習冊答案