【題目】如圖,ABCD的對角線AC,BD相交于點O,點E是CD的中點,△ABD的周長為16cm,則△DOE的周長是cm.
【答案】8
【解析】解:∵四邊形ABCD是平行四邊形, ∴O是BD中點,△ABD≌△CDB,
又∵E是CD中點,
∴OE是△BCD的中位線,
∴OE= BC,
即△DOE的周長= △BCD的周長,
∴△DOE的周長= △DAB的周長.
∴△DOE的周長= ×16=8cm.
所以答案是:8.
【考點精析】解答此題的關鍵在于理解三角形中位線定理的相關知識,掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半,以及對平行四邊形的性質的理解,了解平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,且AC⊥BD,點E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,依次連接各邊中點得到四邊形EFGH,求證:四邊形EFGH是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次數(shù)學測試后,某班40名學生的成績被分為5組,第1~4組的頻數(shù)分別為12,10,6,8,則第5組的百分比是( )
A. 10% B. 20% C. 30% D. 40%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線a、b被直線c所截,現(xiàn)給出下列四種條件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°;④∠3=∠8,其中能判斷是a∥b的條件的序號是( )
A.①②
B.①③
C.①④
D.③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暑假就要來了,小明為自己制定了慢跑鍛煉計劃,某日小明從家出發(fā)沿解放路慢跑,已知他離家的距離s(千米)與時間t(分鐘)之間的關系如圖所示,請根據(jù)圖象直接回答下列問題:
(1)小明離開家的最遠距離是多少千米,他在120分鐘內共跑了多少千米;
(2)小明在這次慢跑過程中,停留所用的時間為多少分鐘;
(3)小明在這段時間內慢跑的最快速度是每小時多少千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AE⊥BD,垂足為E,ED=3BE,點P、Q分別在BD,AD上,則AP+PQ的最小值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com