(2013•河南)如圖,CD是⊙O的直徑,弦AB⊥CD于點G,直線EF與⊙O相切于點D,則下列結論中不一定正確的是( 。
分析:根據(jù)切線的性質,垂徑定理即可作出判斷.
解答:解:A、∵CD是⊙O的直徑,弦AB⊥CD于點G,
∴AG=BG,故正確;
B、∵直線EF與⊙O相切于點D,
∴CD⊥EF,
又∵AB⊥CD,
∴AB∥EF,故正確;
C、只有當弧AC=弧AD時,AD∥BC,當兩個互不等時,則不平行,故選項錯誤;
D、根據(jù)同弧所對的圓周角相等,可以得到∠ABC=∠ADC.故選項正確.
故選C.
點評:本題考查了切線的性質定理、圓周角定理以及垂徑定理,理解定理是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•河南)如圖是正方體的一種展開圖,其每個面上都標有一個數(shù)字,那么在原正方體中,與數(shù)字“2”相對的面上的數(shù)字是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河南)如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為
3
2
或3
3
2
或3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河南)如圖,在等邊三角形ABC中,BC=6cm.射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設運動時間為t(s).
(1)連接EF,當EF經(jīng)過AC邊的中點D時,求證:△ADE≌△CDF;
(2)填空:
①當t為
6
6
s時,四邊形ACFE是菱形;
②當t為
1.5
1.5
s時,以A、F、C、E為頂點的四邊形是直角梯形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河南)如圖,矩形OABC的頂點A、C分別在x軸和y軸上,點B的坐標為(2,3).雙曲線y=
kx
(x>0)的圖象經(jīng)過BC的中點D,且與AB交于點E,連接DE.
(1)求k的值及點E的坐標;
(2)若點F是OC邊上一點,且△FBC∽△DEB,求直線FB的解析式.

查看答案和解析>>

同步練習冊答案