分析 根據(jù)等邊三角形的性質(zhì)得到AE=AB,AD=AC,∠EAB=∠DAC=60°,則∠BAD=∠EAC,再根據(jù)三角形全等的判定方法可證得△ACE≌△ADB,根據(jù)全等的性質(zhì)得出BD=CE,再證出∠CBE=90°,由勾股定理求出CE,即可得到結(jié)果.
解答 證明:∵△ABE和△ACD是等邊三角形,
∴BE=AE=AB=2,AD=AC,∠ABE=∠EAB=∠DAC=60°,
∴∠EAB+∠BAC=∠DAC+∠CAB,
∴∠BAD=∠EAC,
在△ACE和△ADB中,$\left\{\begin{array}{l}{AE=AB}\\{∠EAC=∠DAB}\\{AC=AD}\end{array}\right.$,
∴△ACE≌△ADB(SAS),
∴BD=CE,
∵∠ABC=30°,
∴∠CBE=∠ABE+∠ABC=90°,
∴CE=$\sqrt{B{C}^{2}+B{E}^{2}}$=$\sqrt{(\sqrt{5})^{2}+{2}^{2}}$=3,
∴BD=3;
故答案為:3.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理;熟練掌握等邊三角形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 第8秒 | B. | 第10秒 | C. | 第12秒 | D. | 第15秒 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com