【題目】如圖,在圓O中,AB為直徑,EF為弦,連接AFBE交于點(diǎn)P,且EF2PFAF

1)求證:F為弧BE的中點(diǎn);

2)若tan∠BEF,求cos∠ABE的值.

【答案】1)證明見(jiàn)解析;(2

【解析】

1)連接AE,根據(jù)EF2PFAF得出△AFE∽△EFP,從而得出∠EAF∠BEF,得證;

2)連接BFOF,OFBE于點(diǎn)Q,根據(jù)tan∠BEF,設(shè)BF3m,則AF4m,根據(jù)勾股定理AB5m,再根據(jù)得出OF⊥BE,EQBQEFBF3m,再根據(jù)tan∠BEF算出BQEQ m,從而求算.

1)證明:連接AE

∵EF2PFAF,

∵∠AFE∠EFP,

∴△AFE∽△EFP,

∴∠EAF∠BEF,

,

∴F為弧BE的中點(diǎn);

2)解:連接BF、OF,OFBE于點(diǎn)Q,

∵AB是直徑,

∴∠AFB90°

∵tan∠BEF

∴tan∠BAF,

設(shè)BF3m,則AF4m,根據(jù)勾股定理AB5m,

∴OBOFm,

,

∴OF⊥BE,EQBQ,EFBF3m,

∵tan∠BEF

,

∴BQEQ m,

Rt△BOQ中,cos∠ABE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABCD的對(duì)角線AC,BD相交于點(diǎn)O,且AEBD,BEAC,OECD

1)求證:四邊形ABCD是菱形;

2)如圖2,若∠ADC60°,AD4,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象如圖所示,與軸的交點(diǎn)分別,且函數(shù)與軸交點(diǎn)在的下方,現(xiàn)給以下結(jié)論:;;當(dāng)時(shí),的取值范圍是;.則下列說(shuō)法正確的是(

A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩隊(duì)參加了端午情,龍舟韻賽龍舟比賽,兩隊(duì)在比賽時(shí)的路程s(米)與時(shí)間t(秒)之間的函數(shù)圖象如圖所示,根據(jù)圖象有以下四個(gè)判斷:

①乙隊(duì)率先到達(dá)終點(diǎn);

②甲隊(duì)比乙隊(duì)多走了126米;

③在47.8秒時(shí),兩隊(duì)所走路程相等;

④從出發(fā)到13.7秒的時(shí)間段內(nèi),甲隊(duì)的速度比乙隊(duì)的慢.

所有正確判斷的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,BECD于點(diǎn)E,DFBC于點(diǎn)F

1)求證:BFDE;

2)分別延長(zhǎng)BEAD,交于點(diǎn)G,若∠A45°,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADB、BCD都是等邊三角形,點(diǎn)E,F分別是ABAD上兩個(gè)動(dòng)點(diǎn),滿足AE=DF連接BF與DE相交于點(diǎn)GCHBF,垂足為H連接CG若DG=,BG=、滿足下列關(guān)系:,,則GH=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB2BC,MAB的中點(diǎn),則∠CMD( 。

A.是銳角B.是直角

C.是鈍角D.度數(shù)不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn) B﹣1,0),C2,3),拋物線與y軸的焦點(diǎn)A,與x軸的另一個(gè)焦點(diǎn)為D,點(diǎn)M為線段AD上的一動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為t

1)求拋物線的表達(dá)式;

2)過(guò)點(diǎn)My軸的平行線,交拋物線于點(diǎn)P,設(shè)線段PM的長(zhǎng)為1,當(dāng)t為何值時(shí),1的長(zhǎng)最大,并求最大值;(先根據(jù)題目畫(huà)圖,再計(jì)算)

3)在(2)的條件下,當(dāng)t為何值時(shí),△PAD的面積最大?并求最大值;

4)在(2)的條件下,是否存在點(diǎn)P,使△PAD為直角三角形?若存在,直接寫(xiě)出t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解“陽(yáng)光體育”活動(dòng)的開(kāi)展情況,從全校1000名學(xué)生中,隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(每名學(xué)生只能從A、B、C、D中選擇一項(xiàng)自己喜歡的活動(dòng)項(xiàng)目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖

A:踢毽子 B:乒乓球 C:籃球 D:跳繩

根據(jù)以上信息,解答下列問(wèn)題:

(1)被調(diào)查的學(xué)生共有 人,并補(bǔ)全條形統(tǒng)計(jì)圖;

2在扇形統(tǒng)計(jì)圖中,求表示區(qū)域D的扇形圓心角的度數(shù);

3)全校學(xué)生中喜歡籃球的人數(shù)大約是多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案