(2013年四川自貢14分)如圖,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且D(2,3),tan∠DBA=

(1)求拋物線的解析式;

(2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、M、C、A,求四邊形BMCA面積的最大值;

(3)在(2)中四邊形BMCA面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.

 

【答案】

解:(1)如答圖1,過點D作DE⊥x軸于點E,則DE=3,OE=2。

,∴BE=6。

∴OB=BE﹣OE=4。∴B(﹣4,0)。

∵點B(﹣4,0)、D(2,3)在拋物線y=ax2+bx﹣2(a≠0)上,

,解得。

∴拋物線的解析式為:。

(2)在拋物線中,

令x=0,得y=﹣2,∴C(0,﹣2)。

令y=0,得x=﹣4或1,∴A(1,0)。

設(shè)點M坐標(biāo)為(m,n)(m<0,n<0)。

如答圖1,過點M作MF⊥x軸于點F,則MF=﹣n,OF=﹣m,BF=4+m。

∵點M(m,n)在拋物線上,∴,代入上式得:

,

∴當(dāng)m=﹣2時,四邊形BMCA面積有最大值,最大值為9。

(3)假設(shè)存在這樣的⊙Q,

如答圖2所示,設(shè)直線x=﹣2與x軸交于點G,與直線AC交于點F

設(shè)直線AC的解析式為y=kx+b,

將A(1,0)、C(0,﹣2)代入得:

,解得:。

∴直線AC解析式為:y=2x﹣2。

令x=﹣2,得y=﹣6,∴F(﹣2,﹣6),GF=6。

在Rt△AGF中,由勾股定理得:

。

設(shè)Q(﹣2,q),則在Rt△AGF中,由勾股定理得:

。

設(shè)⊙Q與直線AC相切于點E,則QE=OQ=。

在Rt△AGF與Rt△QEF中,

∵∠AGF=∠QEF=90°,∠AFG=∠QFE,∴Rt△AGF∽Rt△QEF。

,即。

化簡得:,解得q=4或q=﹣1。

∴存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓,點Q的坐標(biāo)為(﹣2,4)或(﹣2,﹣1)。

【解析】(1)如答圖1所示,利用已知條件求出點B的坐標(biāo),然后用待定系數(shù)法求出拋物線的解析式。

(2)如答圖1所示,首先求出四邊形BMCA面積的表達式,然后利用二次函數(shù)的性質(zhì)求出其最大值。

(3)如答圖2所示,首先求出直線AC與直線x=2的交點F的坐標(biāo),從而確定了Rt△AGF的各個邊長;然后證明Rt△AGF∽Rt△QEF,利用相似線段比例關(guān)系列出方程,求出點Q的坐標(biāo)。

考點:二次函數(shù)綜合題,曲線上點的坐標(biāo)與方程的關(guān)系,銳角三角函數(shù)定義,由實際問題列函數(shù)關(guān)系式,二次函數(shù)最值,勾股定理,相似三角形的判定和性質(zhì),圓的切線性質(zhì)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川自貢卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川自貢12分)將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.

(1)將圖①中的△A1B1C順時針旋轉(zhuǎn)45°得圖②,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;

(2)在圖②中,若AP1=2,則CQ等于多少?

(3)如圖③,在B1C上取一點E,連接BE、P1E,設(shè)BC=1,當(dāng)BE⊥P1B時,求△P1BE面積的最大值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川自貢卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川自貢12分)在東西方向的海岸線l上有一長為1km的碼頭MN(如圖),在碼頭西端M的正西19.5km處有一觀察站A.某時刻測得一艘勻速直線航行的輪船位于A的北偏西30°,且與A相距40km的B處;經(jīng)過1小時20分鐘,又測得該輪船位于A的北偏東60°,且與A相距km的C處.

(1)求該輪船航行的速度(保留精確結(jié)果);

(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川自貢卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川自貢10分)如圖,點B、C、D都在⊙O上,過點C作AC∥BD交OB延長線于點A,連接CD,且∠CDB=∠OBD=30°,DB=cm.

(1)求證:AC是⊙O的切線;

(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川自貢卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川自貢10分)為配合我市創(chuàng)建省級文明城市,某校對八年級各班文明行為勸導(dǎo)志愿者人數(shù)進行了統(tǒng)計,各班統(tǒng)計人數(shù)有6名、5名、4名、3名、2名、1名共計六種情況,并制作如下兩幅不完整的統(tǒng)計圖.

(1)求該年級平均每班有多少文明行為勸導(dǎo)志愿者?并將條形圖補充完整;

(2)該校決定本周開展主題實踐活動,從八年級只有2名文明行為勸導(dǎo)志愿者的班級中任選兩名,請用列表或畫樹狀圖的方法,求出所選文明行為勸導(dǎo)志愿者有兩名來自同一班級的概率.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川自貢卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川自貢8分)某校住校生宿舍有大小兩種寢室若干間,據(jù)統(tǒng)計該校高一年級男生740人,使用了55間大寢室和50間小寢室,正好住滿;女生730人,使用了大寢室50間和小寢室55間,也正好住滿.

(1)求該校的大小寢室每間各住多少人?

(2)預(yù)測該校今年招收的高一新生中有不少于630名女生將入住寢室80間,問該校有多少種安排住宿的方案?

 

查看答案和解析>>

同步練習(xí)冊答案