如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,求證:AD2=CD•BD.
考點(diǎn):射影定理
專題:證明題
分析:利用等角的余角相等得到∠B=∠DAC,則可判斷Rt△ADB∽R(shí)t△CDA,所以AD:CD=BD:AD,然后根據(jù)比例的性質(zhì)即可得到結(jié)論.
解答:證明:∵AD⊥BC于點(diǎn)D,
∴∠ADB=∠ADC=90°,
∴∠B+∠BAD=90°,
而∠BAD=∠DAC=90°,
∴∠B=∠DAC,
∴Rt△ADB∽R(shí)t△CDA,
∴AD:CD=BD:AD,
∴AD2=CD•BD.
點(diǎn)評(píng):本題考查了射影定理:直角三角形中,斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng).每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項(xiàng).也考查了相似三角形的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,
 
與∠C是直角線BC、DE被直線FC所截得的同位角,
 
 
是直線AB、FC被直線DE所截得的內(nèi)錯(cuò)角,∠C與∠B是直線AB、FC被直線
 
所截得的同旁內(nèi)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法錯(cuò)誤的是( 。
A、不等式x-3<-2的解集為x<1
B、不等式x+2≤-2的最大負(fù)整數(shù)解為-1
C、若不等式-3x+7<-2x成立,則不等式2x>9成立
D、不等式-x≥-1的解集表示在數(shù)軸上如圖所示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,AB=3,∠B=40°,則AC=( 。
A、3cos50°
B、3tan40°
C、3sin50°
D、
3
sin40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:12+(-17)-(-23).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列長度的三條線段不能組成直角三角形的是( 。
A、3,4,5
B、2,
3
5
C、1,
3
,2
D、6,10,8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:y=x2-2x-3,
①寫成y=-(x-h)2+k的形式;
②求出圖象與x軸的交點(diǎn);
③直接寫出原拋物線沿x軸翻折后圖象的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:2x2-〔(x2-x)-(2x2+3x-1)〕,其中x=-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙O的內(nèi)接四邊形ABCD中,∠A=5∠C,則∠C的度數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案