【題目】如圖,在四邊形ABCD中,AC、BD相交于點F,點E在BD上,且 = =
(1)試問:∠BAE與∠CAD相等嗎?為什么?
(2)試判斷△ABE與△ACD是否相似?并說明理由.

【答案】
(1)解:∠BAE與∠CAD相等.

理由:∵ = = ,

∴△ABC∽△AED,

∴∠BAC=∠EAD,

∴∠BAE=∠CAD


(2)解:△ABE與△ACD相似.

= ,

=

在△ABE與△ACD中,

= ,∠BAE=∠CAD,

∴△ABE∽△ACD


【解析】(1)先根據(jù)題意得出△ABC∽△AED,由相似三角形的性質(zhì)即可得出結(jié)論;(2)先根據(jù)題意得出 = ,再由∠BAE=∠CAD即可得出結(jié)論.
【考點精析】本題主要考查了相似三角形的判定的相關(guān)知識點,需要掌握相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是直角邊長為2a的等腰直角三角形,直角邊AB是半圓O1的直徑,半圓O2過C點且與半圓O1相切,則圖中陰影部分的面積是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 與y=﹣kx2+k(k≠0)在同一直角坐標(biāo)系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程x2﹣6x﹣m=0有兩個實數(shù)根.
(1)求m的取值范圍;
(2)如果m取符合條件的最小整數(shù),且一元二次方程x2﹣6x﹣m=0與x2+nx+1=0有一個相同的根,求常數(shù)n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長分別為2和4的兩個全等三角形,開始它們在左邊重疊,大△ABC固定不動,然后把小△A′B′C′自左向右平移,直至移到點B′到C重合時停止,設(shè)小三角形移動的距離為x,兩個三角形的重合部分的面積為y,則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:
(1)(x+1)2=1
(2)x2﹣6x+4=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列結(jié)論: ①a<0,②b<0,③c<0,
其中正確的判斷是(

A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于P(n,2),與x軸交于A(﹣4,0),與y軸交于C,PB⊥x軸于點B,且AC=BC.

(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象有一點D,使得以B、C、P、D為頂點的四邊形是菱形,求出點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年4月23日,是第16個世界讀書日.某校為了解學(xué)生每周課余自主閱讀的時間,在本校隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查,現(xiàn)將調(diào)查結(jié)果繪制成如圖不完整的統(tǒng)計圖表,請根據(jù)圖表中的信息解答下列問題

組別

學(xué)習(xí)時間x(h)

頻數(shù)(人數(shù))

A

0<x≤1

8

B

1<x≤2

24

C

2<x≤3

32

D

3<x≤4

n

E

4小時以上

4


(1)表中的n= , 中位數(shù)落在組,扇形統(tǒng)計圖中B組對應(yīng)的圓心角為°;
(2)請補(bǔ)全頻數(shù)分布直方圖;
(3)該校準(zhǔn)備召開利用課余時間進(jìn)行自主閱讀的交流會,計劃在E組學(xué)生中隨機(jī)選出兩人進(jìn)行經(jīng)驗介紹,已知E組的四名學(xué)生中,七、八年級各有1人,九年級有2人,請用畫樹狀圖法或列表法求抽取的兩名學(xué)生都來自九年級的概率.

查看答案和解析>>

同步練習(xí)冊答案