【題目】1)在等腰三角形ABC,∠A130°,求∠B的度數(shù)

2)在等腰三角形ABC中,∠A40°,求∠B的度數(shù).

3)根據(jù)(1)(2)問(wèn)后發(fā)現(xiàn),∠A的度數(shù)不同,得到∠B的度數(shù)的個(gè)數(shù)也可能不同,如果在等腰三角形ABC中,設(shè)∠Ax°,當(dāng)∠B有三個(gè)不同的度數(shù)時(shí),請(qǐng)你探索x的取值范圍,并用含x的式子表示∠B的度數(shù).

【答案】1)∠B=25°;(2)∠B70°或100°或40°;(3)當(dāng)x≠60時(shí),∠B有三個(gè)不同的度數(shù),∠B的度數(shù)為()°或(1802x)°或x°.

【解析】

1)根據(jù)三角形內(nèi)角和定理,因?yàn)椤?/span>A130°>90°,得到∠B=∠C25°;

2)根據(jù)三角形內(nèi)角和定理,因?yàn)椤?/span>A40°<90°,所以有∠A=∠B或∠A=∠C或∠B=∠C,分別求出∠B的度數(shù)即可;

3)分兩種情況:當(dāng)90≤x180時(shí),∠B的度數(shù)只有一個(gè),不符合條件;當(dāng)0x90時(shí),結(jié)合三角形內(nèi)角和定理先求出三種情況時(shí)∠B的度數(shù),再根據(jù)∠B的三個(gè)度數(shù)不同求解即可.

解:(1)根據(jù)三角形內(nèi)角和定理,

A130°90°,

BC=(180°-130°)÷2=25°;

2)若∠A為頂角,則∠B=(180°﹣∠A)÷270°;

若∠A為底角,∠B為頂角,則∠B180°﹣2×40°=100°;

A為底角,B為底角,則B=∠A=40°

故∠B70°或100°或40°;

3)分兩種情況:

當(dāng)90x180時(shí),∠A只能為頂角,

∴∠B的度數(shù)只有一個(gè),∠B=()°,不符合條件;

當(dāng)0x90時(shí),

若∠A為頂角,則∠B=()°;

若∠A為底角,∠B為頂角,則∠B=(1802x)°;

若∠A為底角,∠B為底角,則∠Bx°.

∵∠B有三個(gè)不同的同的度數(shù),

1802x1802xxx

解得x60,

即當(dāng)x≠60時(shí),B有三個(gè)不同的度數(shù),∠B的度數(shù)為()°或(1802x)°或x°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E、F是對(duì)角線BD上兩點(diǎn),且∠EAF=45°,將ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到ABQ,連接EQ,求證:

(1)EA是∠QED的平分線;

(2)EF2=BE2+DF2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某天,一蔬菜經(jīng)營(yíng)戶用 1200 元錢(qián)按批發(fā)價(jià)從蔬菜批發(fā)市場(chǎng)買(mǎi)了西紅柿和豆角共 400 kg,然后在市場(chǎng)上按零售價(jià)出售,西紅柿和豆角當(dāng)天的批發(fā)價(jià)和零售價(jià)如表所示:

品名

西紅柿

豆角

批發(fā)價(jià)(單位:元/kg

2.4

3.2

零售價(jià)(單位:元/kg

3.8

5.2

1)該經(jīng)營(yíng)戶所批發(fā)的西紅柿和豆角的質(zhì)量分別為多少 kg?

2)如果西紅柿和豆角全部以零售價(jià)售出,他當(dāng)天賣(mài)出這些西紅柿和豆角賺了多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

(1)接受問(wèn)卷調(diào)查的學(xué)生共有   人,扇形統(tǒng)計(jì)圖中了解部分所對(duì)應(yīng)扇形的圓心角為   °;

(2)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù)為  人;

(3)若從對(duì)校園安全知識(shí)達(dá)到了解程度的3個(gè)女生A、B、C2個(gè)男生M、N中分別隨機(jī)抽取1人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到女生A的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面內(nèi),有相互平行的三條直線ab,c,且a,b之間的距離為1,b,c之間的距離是2,若等腰RtABC的三個(gè)頂點(diǎn)恰好各在這三條平行直線上,如圖所示,則△ABC的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ACB90°,∠A30°CDABD,BCD的周長(zhǎng)為(62cm,則ABC的周長(zhǎng)為( cm

A.92B.12C.124D.182

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACBC,∠ACB90°,AE平分∠BACBCEBDAEAE延長(zhǎng)線于D,DFACAC的延長(zhǎng)線于F,連接CD,給出四個(gè)結(jié)論:① FDC22 2BDAE;③ ACCEAB ABBC2FC.其中正確的結(jié)論有( 個(gè)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,AD是∠BAC的平分線,GAD上一點(diǎn),且AG=DG,連接BG并延長(zhǎng)BGACE,又過(guò)CAD的垂線交ADH,交ABF,則下列說(shuō)法:

DBC的中點(diǎn);

BEAC

③∠CDA>∠2;

④△AFC為等腰三角形;

⑤連接DF,若CF=6,AD=8,則四邊形ACDF的面積為24

其中正確的是________(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點(diǎn),若∠AEF=54,則∠B=( )

A. 54 B. 60 C. 72 D. 66

查看答案和解析>>

同步練習(xí)冊(cè)答案