【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1


(1)求出表中M、p及圖中a的值;
(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

【答案】
(1)解:由題可知 =0.25, =n, =p, =0.05.

又10+25+m+2=M,

解得M=40,n=0.625,m=3,p=0.075.

則[15,20)組的頻率與組距之比a為0.125.


(2)解:參加社區(qū)服務(wù)的平均次數(shù)為:


(3)解:在樣本中,處于[20,25)內(nèi)的人數(shù)為3,可分別記為A,B,C,

處于[25,30]內(nèi)的人數(shù)為2,可分別記為a,b.

從該5名學(xué)生中取出2人的取法有:

(A,a),(A,b),(B,a),(B,b),(C,a),(C,b),

(A,B),(A,C),(B,C),(a,b),共10種,

至少1人在[20,25)內(nèi)的情況有共9種,

∴至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率為


【解析】(1)由頻率= ,能求出表中M、p及圖中a的值.(2)由頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖能求出參加社區(qū)服務(wù)的平均次數(shù).(3)在樣本中,處于[20,25)內(nèi)的人數(shù)為3,可分別記為A,B,C,處于[25,30]內(nèi)的人數(shù)為2,可分別記為a,b,由此利用列舉法能求出至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
【考點精析】掌握頻率分布直方圖是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ax+by+c=0與圓O:x2+y2=16相交于兩點M、N,若c2=a2+b2 , P為圓O上任意一點,則 的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于點P(x,y),我們把點P′(﹣y+1,x+1)叫做點P的伴隨點,已知點A1的伴隨點為A2,點A2的伴隨點為A3,點A3的伴隨點為A4,…,這樣依次得到點A1,A2,A3,…,An

(1)若點A1的坐標(biāo)為(2,1),則點A4的坐標(biāo)為_____

(2)若點A1的坐標(biāo)為(a,b),對于任意的正整數(shù)n,點An均在x軸上方,則a,b應(yīng)滿足的條件為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓E:(x+ 2+y2=16,點F( ,0),P是圓E上任意一點,線段PF的垂直平分線和半徑PE相交于Q.(Ⅰ)求動點Q的軌跡E的方程; (Ⅱ)直線l過點(1,1),且與軌跡Γ交于A,B兩點,點M滿足 = ,點O為坐標(biāo)原點,延長線段OM與軌跡Γ交于點R,四邊形OARB能否為平行四邊形?若能,求出此時直線l的方程,若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形△ABC的三邊長構(gòu)成公差為2的等差數(shù)列,且最大角的正弦值為 ,則這個三角形的周長為(
A.15
B.18
C.21
D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有五人五錢,令上二人所得與下三人等.問各得幾何?”其意思為:“現(xiàn)有甲乙丙丁戊五人依次差值等額分五錢,要使甲乙兩人所得的錢與丙丁戊三人所得的錢相等,問每人各得多少錢?”根據(jù)題意,乙得(
A.
B.
C.1錢
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以A、B、C、D、E為頂點的五面體中,AD⊥平面ABC,AD∥BE,AC⊥CB,AB=2BE=4AD=4.
(1)O為AB的中點,F(xiàn)是線段BE上的一點,BE=4BF,證明:OF∥平面CDE;
(2)當(dāng)直線DE與平面CBE所成角的正切值為 時,求平面CDE與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程x2+(m+1)x+ =0的一個實數(shù)根的倒數(shù)恰是它本身,則m的值是( )
A.﹣
B.
C.﹣
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時,直達(dá);動車速度為200千米/小時,行駛180千米后,中途要停靠徐州10分鐘,若動車先出發(fā)半小時,兩車與甲地之間的距離y(千米)與動車行駛時間x(小時)之間的函數(shù)圖象為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案