【題目】已知圓E:(x+ 2+y2=16,點(diǎn)F( ,0),P是圓E上任意一點(diǎn),線段PF的垂直平分線和半徑PE相交于Q.(Ⅰ)求動點(diǎn)Q的軌跡E的方程; (Ⅱ)直線l過點(diǎn)(1,1),且與軌跡Γ交于A,B兩點(diǎn),點(diǎn)M滿足 = ,點(diǎn)O為坐標(biāo)原點(diǎn),延長線段OM與軌跡Γ交于點(diǎn)R,四邊形OARB能否為平行四邊形?若能,求出此時(shí)直線l的方程,若不能,說明理由.

【答案】解:(I)∵|QE|+|QF|=|EQ|+|QP|=4,且|EF|=2 <4, ∴點(diǎn)Q的軌跡是以E,F(xiàn)為焦點(diǎn)的橢圓,
設(shè)橢圓方程為 =1,則2a=4,c= ,∴a=2,b= =1.
所以點(diǎn)E的軌跡方程為: +y2=1.
(II)(1)當(dāng)直線l與x軸垂直時(shí),直線l的方程為x=1,顯然四邊形OARB是平行四邊形;(2)當(dāng)直線l與x軸不垂直時(shí),設(shè)直線l:y=kx+m,顯然k≠0,m≠0,
設(shè)A(x1 , y1),B(x2 , y2),M(xM , yM).
聯(lián)立方程組 ,得(4k2+1)x2+8kmx+4m2﹣4=0,
∴x1+x2=﹣ ,
= ,即M是AB的中點(diǎn),
∴xM= =﹣ ,yM=kxM+m= ,
若四邊形OARB是平行四邊形,當(dāng)且僅當(dāng)AB,OR互相平分,
∴R(﹣ , ),
代入橢圓方程得: + =1,即16k2m2+4m2=16k4+8k2+1,
又直線l:y=kx+m經(jīng)過點(diǎn)(1,1),∴m=1﹣k,
∴16k2(1﹣k)2+4(1﹣k)2=16k4+8k2+1,
∴32k3﹣12k2+8k﹣3=0,即(4k2+1)(8k﹣3)=0.
∴k= ,m= ,
∴直線l的方程為y= x+ 時(shí),四邊形OARB是平行四邊形,
綜上,直線l的方程為x=1或y= x+
【解析】(I)利用橢圓的定義即可得出E的軌跡方程;(II)討論直線l的斜率,聯(lián)立方程組,利用根與系數(shù)的關(guān)系得出M點(diǎn)坐標(biāo),根據(jù)平行四邊形對角線互相平分得出R點(diǎn)坐標(biāo),代入橢圓方程化簡即可得出直線l的斜率k.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣2x<0},B={x|y=log2(x﹣1)},則A∪B=(
A.(0,+∞)
B.(1,2)
C.(2,+∞)
D.(﹣∞,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln2(x﹣1)﹣ ﹣x+3. (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)x≥1時(shí),不等式(x+1)x+m≤exx+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)證明:k∈R,直線y=g(x)都不是曲線y=f(x)的切線;
(2)若x∈[e,e2],使得f(x)≤g(x)+ 成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}與{bn}滿足an=2bn+3(n∈N*),若{bn}的前n項(xiàng)和為Sn= (3n﹣1)且λan>bn+36(n﹣3)+3λ對一切n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,則滿足f(f(m))=3f(m)的實(shí)數(shù)m的取值范圍是(
A.(﹣∞,0)∪{﹣ }
B.[0,1]
C.[0,+∞)∪{﹣ }
D.[1,+∞)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計(jì)

M

1


(1)求出表中M、p及圖中a的值;
(2)試估計(jì)他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣3,﹣1, ,1,3這五個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 =﹣1有整數(shù)解,那么這5個(gè)數(shù)中所有滿足條件的a的值之和是( 。
A.﹣3
B.﹣2
C.﹣
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路的同側(cè)依次排列著A,C,B三個(gè)村莊,某天甲、乙兩車分別從A,B兩地出發(fā),沿這條公路勻速行駛至C地停止,從甲車出發(fā)至甲車到達(dá)C地的過程,甲、乙兩車各自與C地的距離y(km)與甲車行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.求:
(1)甲的速度是 , 乙的速度是;
(2)分別求出甲、乙兩車各自與C地的距離y(km)與甲車行駛時(shí)間t(h)之間的函數(shù)關(guān)系式,并寫出取值范圍;
(3)若甲、乙兩車到C地后繼續(xù)沿該公路原速度行駛,求甲車出發(fā)多少小時(shí),兩車相距350km.

查看答案和解析>>

同步練習(xí)冊答案